Evaluation of Knowledge and Skills Mathematics New Evidence for 2nd Year of Basic Education
Downloads
The purpose of this study is to analyze the evaluation process carried out in a Basic School of the Maule Region, in Chile, this process consists of a test that will be applied to the second grade of this establishment. This test was applied in the normal class schedule, the purpose is to comply with the Educational Improvement Plan and the current regulations of the Preferential School Grant Law.
The evaluation instrument used corresponds to a written test, called: "Test of Knowledge and mathematical ability", which consists of 20 questions, divided into 4 learning axes; Numeration, Operative, Knowledge and Resolution of Geometric Problems and Resolution of Arithmetic Problems. For this trial the percentage to have an expected result is 60%.
The second grade of the school obtains a great result because more than half of the respondents obtained an expected performance exactly 71%. Of the present results in addition to congratulate the professors and respective students it can be inferred that there are two areas that are weaker within the three courses which are geometry and operative, that is why it is suggested to try new methodologies to teach these areas, how to prove didactic activities for example using figures to make children feel more entertained, in addition, teachers can be trained in new teaching technologies. The report presents in much more detail the results obtained by the second grade in general and in detail, each one by itself with their respective learning axes.
Araya, R. (2000) Inteligencia Matemática. Santiago: Editorial Universitaria
Blum, W. (1993). Mathematical modelling in mathematics education and instruction. In T. Breiteig,Huntley, & G. Kaiser-Messmer (Eds.), Teaching and learning mathematics in context (pp. 3-14). Chichester, UK: Horwood.
Blum, W., Galbraith, P.L., Henn, W-H., & Niss, M. (Eds.) (2007). Modelling and applications in mathematics education: The 14th ICMI study. New York: Springer.
Blum, W.; Galbraith, P. ; Henn, H. & Niss, M. (2007) Modeling and Applications in Mathematics Education. Springer Verlag.
Borromeo-Ferri, R. (2006). Theoretical and empirical differentiations of phases in the modeling process. ZDM, 38(2), 86-95.
Bruner, J. (1971): Toward a Theory of Instruction. Fifth printing. Cambridge: The Belknap prees of Harvard University.
Bruner, J. (1988). Desarrollo cognitivo y educación. 1ra edición. Madrid: Morata.
Bruner, J. (2006). Actos de significado: más álla de la revolución cognitiva. Madrid: Alianza editorial.
Chiu, M. M. (2000). Metaphorical reasoning: Origins, uses, development and interactions in mathematics. Education Journal, 28(1), 13-46
Chiu, M. M.: 1992, 'Reinterpreting misconceptions through metaphor and metonymy: Teaching and learning mathematics', Unpublished manuscript, University of California, Berkeley.
Chiu, M. M.: 1998, 'Metaphorical reasoning in a domain', Unpublished manuscript, University of California, Los Angeles.
Dörig, Roman: Handlungsorientierter Unterricht - Ansätze, Kritik und Neuorientierung aus bildungstheoretischer, curricularer und instruktionspsychologischer Perspektive. Stuttgart: WiKuVerlag (2003).
Galbraith, P. L., Stillman, G., & Brown, J. (2010). Turning ideas into modelling problems. In R.
Lesh, P. L. Galbraith, C. R. Haines, & A. Hurford (Eds.), mathematical modelling competencies: ICTMA 13 (pp. 133-144).
Kaiser, G. (2005). Mathematical modelling in school. Examples and experiences. En H-W. Henn, G, Kaiser (Eds.), Mathematikunterricht im Spannungsfeld von Evolution und Evaluation. Festband für Werner Blum. Hildesheim: Franzbecker. 99-108.
Kaiser, G., Blum, W., Borromeo Ferri, R., & Stillman, G. (Eds.) (2011). Trends in teaching and learning of mathematical modelling: ICTMA14. New York: Springer.
Mayer, R. (1986). Mathematics, en R. F. Dillon y R. J. Sternberg (Eds.) Cognition and Instruction. San Diego: Academic. 127-154. 24
Propuesta de Bases Curriculares de 7° básico a 2° medio, aprobada por el Consejo Nacional de Educación. Matemática – diciembre 2013
OECD. (2003). The PISA 2003 Assessment Framework – Mathematics, Reading, Science and Problem Solving Knowledge and Skills. Paris: OECD Publications.
OECD. (2010). Pathways to Success: How knowledge and skills at age 15 shape future lives in Canada. Paris: OECD Publications.
OECD. (2010). PISA 2012 mathematics Framework. Extraído de la página web:
http://www.oecd.org/pisa/pisaproducts/46961598.pdf
Oteiza, F y Villarreal G (2011). El Modelo Interactivo, una innovación curricular en matemática: resultados de su implementación en el contexto educacional chileno. Costa Rica, Cuadernos Año 6, Número 9, junio 2011.
Oteiza, F, Araya, R y Miranda H (2004) Aprender Matemática Creando Soluciones, Material del Profesor, Santiago Chile: Editorial Zigzag.
Soto-Andrade, J. (2006). Un monde dans un grain de sable: Mètaphores et analogies dans l’apprentissage des mathèmatiques. Annales de Didactique et Sciences Cognitives, 11, 123-147.
Soto-Andrade, J. (2007). Metaphors and cognitive styles in the teaching-learning of mathematics.
En D. Pitta-Pantazi, y J. Philippou (Eds.). Proceedings CERME 5, 191-200.
Soto-Andrade, J. y Reyes-Santander, P. (2011). Conceptual metaphors and “Grundvorstellungen”. A case of convergence. En M. Pytlak, T. Rowland y Ewa Swoboda (Eds.), Proceedings of the Seventh
Congress of the European Society for Research in Mathematics Education. Rzeszów: University of Rzeszów. 1625-1635
TIMSS. (2011). Marcos de la evaluación. Ministerio de educaciòn, Cutura y Deporte, Instituto Nacional de Evaluación Educativa, Madrid, España.
Vigotsky, L. (2008). Pensamiento y lenguaje. Mexico: Quinto Sol
All Content should be original and unpublished.