A Deployment of IoT sensors in the revolution of agriculture
IoT sensors in agriculture
Downloads
Internet of Things sensors are increasingly deployed in sustainable agriculture and food security. This review article discusses the history and importance of agriculture as a source of food and other products for human consumption and the challenges facing the agriculture industry, including climate change, soil degradation, and water scarcity. The various revolutions that have occurred in agriculture were also explored, from the adoption of modern agriculture to the green process and precision agriculture. This article also summarises by exploring the prospects for the fourth agricultural revolution, which centres on deploying technology to foster environmentally responsible farming methods. This review emphasised the significant potential of IoT sensors in agriculture to enhance sustainability and improve food security.
Adesta, E. Y. T., Agusman, D., & Avicenna, A. (2017). Internet of Things (IoT) in Agriculture Industries. Indonesian Journal of Electrical Engineering and Informatics (IJEEI), 5(4), 376–382. https://doi.org/10.52549/IJEEI.V5I4.373
Adoghe, A., Popoola, S. I., Chukwuedo, O. M., Airoboman, A., & Atayero. (2017). Smart Weather Station for Rural Agriculture using Meteorological Sensors and Solar Energy.
Ahmed, N., De, D., & Hussain, I. (2018). Internet of Things (IoT) for Smart Precision Agriculture and Farming in Rural Areas. IEEE Internet of Things Journal, 5(6), 4890–4899.
https://doi.org/10.1109/JIOT.2018.2879579
Ait Issad, H., Aoudjit, R., & Rodrigues, J. J. P. C. (2019). A comprehensive review of Data Mining techniques in smart agriculture. Engineering in Agriculture, Environment and Food, 12(4), 511–525. https://doi.org/10.1016/J.EAEF.2019.11.003
Akhtar, S. (2017). Integrated IoT (Internet of Things) System Solution for Smart Agriculture Management.
Akhter, R., & Sofi, S. A. (2022). Precision agriculture using IoT data analytics and machine learning. Journal of King Saud University - Computer and Information Sciences, 34(8), 5602–5618. https://doi.org/10.1016/j.jksuci.2021.05.013
Alam, M. M., Siwar, C., Murad, M. W., & Ekhwan, M. (2011). Impacts of Climate Change on Agriculture and Food Security Issues in Malaysia: An Empirical Study on Farm Level Assessment. In World Applied Sciences Journal (Vol. 14, Issue 3). www.idosi.org/wasj/wasj14
Alexey, S. (2023). IoT in Agriculture: 9 Technology Use Cases for Smart Farming (and Challenges to Consider). https://easternpeak.com/blog/iot-in-agriculture-technology-use-cases-for-smart-farming-and-challenges-to-consider/
Alisher, M., & Jianguo, W. (2022). Desertification. In Climate Change and Land (pp. 249–344). Cambridge University Press.
https://doi.org/10.1017/9781009157988.005
Al-Kadhim, H. M., & Al-Raweshidy, H. S. (2019). Energy efficient and reliable transport of data in cloud-based IoT. IEEE Access, 7, 64641–64650. https://doi.org/10.1109/ACCESS.2019.2917387
Al-Turjman, F., & Altiparmak, H. (2020). Smart agriculture framework using UAVs in the Internet of Things era. Drones in Smart-Cities: Security and Performance, 107–122.
https://doi.org/10.1016/B978-0-12-819972-5.00007-0
Ammavasi, N., & Mariappan, R. (2018). Enhanced removal of hazardous fluoride from drinking water by using a smart material: Magnetic iron oxide fabricated layered double hydroxide/cellulose composite. Journal of Environmental Chemical Engineering, 6(4), 5645–5654.
https://doi.org/10.1016/J.JECE.2018.08.071
Aneja, V. P., Schlesinger, W. H., & Erisman, J. W. (2009). Effects of agriculture upon the air quality and climate: Research, policy, and regulations. Environmental Science and Technology, 43(12), 4234–4240. https://doi.org/10.1021/ES8024403/ASSET/IMAGES/LARGE/ES-2008-024403_0001.JPEG
Anteneh, A., & Asrat, D. (2020). Wheat production and marketing in Ethiopia: Review study. Http://Www.Editorialmanager.Com/Cogentagri, 6(1). https://doi.org/10.1080/23311932.2020.1778893
Antle, J. M., & Stoorvogel, J. J. (2008). Agricultural carbon sequestration, poverty, and sustainability. Environment and Development Economics, 13(3), 327–352. https://doi.org/10.1017/S1355770X08004324
Ashley, W. (2023). Why Eggs Cost So Much - The New York Times.
https://www.nytimes.com/2023/02/03/briefing/why-eggs-cost-so-much.html
Asplund, M., & Nadjm-Tehrani, S. (2016). Attitudes and Perceptions of IoT Security in Critical Societal Services. IEEE Access, 4, 2130–2138. https://doi.org/10.1109/ACCESS.2016.2560919
Asseng, S., Ewert, F., Martre, P., Rötter, R. P., Lobell, D. B., Cammarano, D., Kimball, B. A., Ottman, M. J., Wall, G. W., White, J. W., Reynolds, M. P., Alderman, P. D., Prasad, P. V. V., Aggarwal, P. K., Anothai, J., Basso, B., Biernath, C., Challinor, A. J., De Sanctis, G., … Zhu, Y. (2014). Rising temperatures reduce global wheat production. Nature Climate Change 2014 5:2, 5(2), 143–147. https://doi.org/10.1038/nclimate2470
Atlam, H. F., Alenezi, A., Alharthi, A., Walters, R. J., & Wills, G. B. (2018). Integration of cloud computing with internet of things: Challenges and open issues. Proceedings - 2017 IEEE International Conference on Internet of Things, IEEE Green Computing and Communications, IEEE Cyber, Physical and Social Computing, IEEE Smart Data, IThings-GreenCom-CPSCom-SmartData 2017, 2018-January, 670–675. https://doi.org/10.1109/ITHINGS-GREENCOM-CPSCOM-SMARTDATA.2017.105
Ayaz, M., Ammad-Uddin, M., Sharif, Z., Mansour, A., & Aggoune, E. H. M. (2019). Internet-of-Things (IoT)-based smart agriculture: Toward making the fields talk. IEEE Access, 7, 129551–129583. https://doi.org/10.1109/ACCESS.2019.2932609
Ayre, M., McCollum, V., Waters, W., Samson, P., Curro, A., Nettle, R., Paschen, J.-A., King, B., & Reichelt, N. (2018). Exploring the value proposition of digital technologies in smart farming: an approach co-designed by agricultural advisors.
Balafoutis, A., Beck, B., Fountas, S., Vangeyte, J., Van Der Wal, T., Soto, I., Gómez-Barbero, M., Barnes, A., & Eory, V. (2017). Precision Agriculture Technologies Positively Contributing to GHG Emissions Mitigation, Farm Productivity and Economics. Sustainability 2017, Vol. 9, Page 1339, 9(8), 1339. https://doi.org/10.3390/SU9081339
Baltic, T., Rajic, S., Ciric, J., Brankovic Lazic, I., Djordjevic, V., Velebit, B., & Geric, T. (2021). Impact of COVID-19 pandemic on food supply chain: An overview. IOP Conference Series: Earth and Environmental Science, 854(1), 012007. https://doi.org/10.1088/1755-1315/854/1/012007
Barrera, A. (2011). New Realities, New paradigms: The New Agricultural Revolution.
Bechar, A., & Vigneault, C. (2016). Agricultural robots for field operations: Concepts and components. Biosystems Engineering, 149, 94–111. https://doi.org/10.1016/j.biosystemseng.2016.06.014
BECK, L. (1989). A Review of Farm Waste Pollution. Water and Environment Journal, 3(5), 467–477. https://doi.org/10.1111/J.1747-6593.1989.TB01421.X
Beckmann, M. J. (1972). Von Thünen Revisited: A Neoclassical Land Use Model. The Swedish Journal of Economics, 74(1), 1.
https://doi.org/10.2307/3439005
Belanche, A., Martín-García, A. I., Fernández-Álvarez, J., Pleguezuelos, J., Mantecón, Á. R., & Yáñez-Ruiz, D. R. (2019). Optimizing management of dairy goat farms through individual animal data interpretation: A case study of smart farming in Spain. Agricultural Systems, 173, 27–38. https://doi.org/10.1016/J.AGSY.2019.02.002
Belcore, E., Angeli, S., Colucci, E., Musci, M. A., & Aicardi, I. (2021). Precision Agriculture Workflow, from Data Collection to Data Management Using FOSS Tools: An Application in Northern Italy Vineyard. ISPRS International Journal of Geo-Information 2021, Vol. 10, Page 236, 10(4), 236. https://doi.org/10.3390/IJGI10040236
Bhateshwar, B. L., Intodia, S. K., Garg, K., Kantwa, R., & niwas, R. (2020). Effect of FYM, Mulching and Agro-Chemicals on Yield, Nutrient Content and their uptake by Wheat (Triticum aestivum L.) under Different Sowing Dates. International Journal of Current Microbiology and Applied Sciences, 9(5), 787–795. https://doi.org/10.20546/IJCMAS.2020.905.087
Bhuvandas, N., Vallabhbhai, S., & Aggarwal, V. (2012). Impacts of urbanisation on environment Analysis of trend of Extreme Daily Temperature of Abu Dhabi city, UAE View project. https://www.researchgate.net/publication/26521662
Boursianis, A. D., Papadopoulou, M. S., Diamantoulakis, P., Liopa-Tsakalidi, A., Barouchas, P., Salahas, G., Karagiannidis, G., Wan, S., & Goudos, S. K. (2022). Internet of Things (IoT) and Agricultural Unmanned Aerial Vehicles (UAVs) in smart farming: A comprehensive review. Internet of Things, 18, 100187.
https://doi.org/10.1016/J.IOT.2020.100187
Britannica. (2021). Agronomy | Definition, Description, & Facts | Britannica. https://www.britannica.com/science/agronomy
Campos, H. (2020). The innovation revolution in agriculture: A roadmap to value creation. In The Innovation Revolution in Agriculture: A Roadmap to Value Creation. Springer International Publishing. https://doi.org/10.1007/978-3-030-50991-0/COVER
Cantor, A., Turley, B., Ross, C. C., & Glass, M. (2022). Changes to California Alfalfa Production and Perceptions during the 2011–2017 Drought. Https://Doi.Org/10.1080/00330124.2022.2075409, 74(4), 628–641.
https://doi.org/10.1080/00330124.2022.2075409
Chuang, J. H., Wang, J. H., & Liou, Y. C. (2020). Farmers’ Knowledge, Attitude, and Adoption of Smart Agriculture Technology in Taiwan. International Journal of Environmental Research and Public Health 2020, Vol. 17, Page 7236, 17(19), 7236. https://doi.org/10.3390/IJERPH17197236
Chun-Ting, P., Meng-Ju, L., Nen-Fu, H., Jhong-Ting, L., & Jia-Jung, S. (2020). Agriculture Blockchain Service Platfo
rm for Farm-to-Fork Traceability with IoT Sensors. International Conference on Information Networking, 2020-January, 158–163. https://doi.org/10.1109/ICOIN48656.2020.9016535
Clay, N., & Zimmerer, K. S. (2020). Who is resilient in Africa’s Green Revolution? Sustainable intensification and Climate Smart Agriculture in Rwanda. Land Use Policy, 97, 104558. https://doi.org/10.1016/J.LANDUSEPOL.2020.10458
Conway, Gordon., Pretty, J. N., & International Institute for Environment and Development. (2009). Unwelcome harvest : agriculture and pollution. Earthscan.https://www.routledge.com/Unwelcome-Harvest-Agriculture-and-pollution/Conway-Pretty/p/book/9780415851831
Cromley, R. G. (1982). The Von Thünen Model and Environmental Uncertainty. Annals of the Association of American Geographers, 72(3), 404–410.https://doi.org/10.1111/j.1467-8306.1982.tb01834x
da Silveira, F., Lermen, F. H., & Amaral, F. G. (2021). An overview of agriculture 4.0 development: Systematic review of descriptions, technologies, barriers, advantages, and disadvantages. Computers and Electronics in Agriculture, 189, 106405. https://doi.org/10.1016/J.COMPAG.2021.106405
Dan, O. (2023). CropX continues to harvest farm management technology | Fierce Electronics. https://www.fierceelectronics.com/sensors/cropx-continues-harvest-farm-management-technology
Desa, U. N. (2018). Desa, U. N. (2018). 68% of the world population projected to live in urban areas by 2050, says UN. . United Nafions Department of Economic and Social Affairs. https://www.un.org/development/desa/en/news/population/2018-revision-of-world-urbanization-prospects.html
Diekmann, F. (2009). Wheat. Journal of Agricultural & Food Information, 10(4), 289–299. https://doi.org/10.1080/10496500903245404
Dileep, M. R., Navaneeth, A. V., Ullagaddi, S., & Danti, A. (2020). A Study and Analysis on Various Types of Agricultural Drones and its Applications. Proceedings - 2020 5th International Conference on Research in Computational Intelligence and Communication Networks, ICRCICN 2020, 181–185. https://doi.org/10.1109/ICRCICN50933.2020.9296195
Dončić, D., Popović, V. M., Lakić, Ž., Popović, D. B., & Petković, Z. (2019). Economic analysis of wheat production and applied marketing management. Agriculture and Forestry, 65(4), 91–100. https://doi.org/10.17707/AGRICULTFOREST.65.4.08
Eastwood, C., Klerkx, L., Ayre, M., & Dela Rue, B. (2019). Managing Socio-Ethical Challenges in the Development of Smart Farming: From a Fragmented to a Comprehensive Approach for Responsible Research and Innovation. Journal of Agricultural and Environmental Ethics, 32(5–6), 741–768. https://doi.org/10.1007/S10806-017-9704-5/TABLES/6
Elijah, O., Rahman, T. A., Orikumhi, I., Leow, C. Y., & Hindia, M. N. (2018). An Overview of Internet of Things (IoT) and Data Analytics in Agriculture: Benefits and Challenges. IEEE Internet of Things Journal, 5(5), 3758–3773. https://doi.org/10.1109/JIOT.2018.2844296
Eltayb, A., Barakat, S., Marrone, G., Shaddad, S., & Stålsby Lundborg, C. (2012). Antibiotic Use and Resistance in Animal Farming: A Quantitative and Qualitative Study on Knowledge and Practices among Farmers in Khartoum, Sudan. Zoonoses and Public Health, 59(5), 330–338.
https://doi.org/10.1111/J.1863-2378.2012.01458.X
European Commission. (2013). Food Traceability. https://sanco.ec.europa.eu/traces
European Commission, J. R. C., Gómez-Barbero, M., Sánchez, B., & Vangeyte, J. (2019). The contribution of precision agriculture technologies to farm productivity and the mitigation of greenhouse gas emissions in the EU.
https://data.europa.eu/doi/10.2760/016263
Evans, J. R., & Lawson, T. (2020). From green to gold: agricultural revolution for food security. Journal of Experimental Botany, 71(7), 2211–2215. https://doi.org/10.1093/jxb/eraa110
Evstatiev, B. I., Valov, N. P., Kadirova, S. Y., & Nenov, T. R. (2022). Implementation of a Prototype IoT-Based System for Monitoring the Health, Behavior and Stress of Cows. 2022 IEEE 9th Electronics System-Integration Technology Conference, ESTC 2022 - Proceedings, 77–81. https://doi.org/10.1109/ESTC55720.2022.9939489
Faid, A., Sadik, M., & Sabir, E. (2020). IoT-based Low Cost Architecture for Smart Farming. 2020 International Wireless Communications and Mobile Computing, IWCMC 2020, 1296–1302. https://doi.org/10.1109/IWCMC48107.2020.9148455
Faid, A., Sadik, M., & Sabir, E. (2022). An Agile AI and IoT-Augmented Smart Farming: A Cost-Effective Cognitive Weather Station. Agriculture (Switzerland), 12(1), 35. https://doi.org/10.3390/AGRICULTURE12010035/S1
FAO. (2017). Water for Sustainable Food and Agriculture A report produced for the G20 Presidency of Germany. www.fao.org/publications
FAO. (2021). Climate-smart agriculture case studies 2021. In Climate-smart agriculture case studies 2021. FAO. https://doi.org/10.4060/cb5359en
FAO. (2022). FAO publications catalogue 2022. FAO Publications Catalogue 2022. https://doi.org/10.4060/CC2323EN
Ferreira, C. S. S., Seifollahi-Aghmiuni, S., Destouni, G., Ghajarnia, N., & Kalantari, Z. (2022). Soil degradation in the European Mediterranean region: Processes, status and consequences. Science of The Total Environment, 805, 150106.
https://doi.org/10.1016/J.SCITOTENV.2021.150106
Food and Agriculture Organization of the United Nations. (2018). F O O D T R A C E A B I L I T Y G U I D A N C E.
https://www.fao.org/3/I7665EN/i7665en.pdf
Friha, O., Ferrag, M. A., Shu, L., Maglaras, L., & Wang, X. (2021). Internet of Things for the Future of Smart Agriculture: A Comprehensive Survey of Emerging Technologies. IEEE/CAA Journal of Automatica Sinica, 8(4), 718–752.
https://doi.org/10.1109/JAS.2021.1003925
Gan, J. S., Li, X. B., Rizwan, K., Adeel, M., Bilal, M., Rasheed, T., & Iqbal, H. M. N. (2022). Covalent organic frameworks-based smart materials for mitigation of pharmaceutical pollutants from aqueous solution. Chemosphere, 286, 131710. https://doi.org/10.1016/J.CHEMOSPHERE.2021.131710
Giles, D. K., Klassen, P., Niederholzer, F. J. A., & Downey, D. (2011). “Smart” sprayer technology provides environmental and economic benefits in California orchards. California Agriculture, 65(2), 85–89. https://doi.org/10.3733/ca.v065n02p85
Gupta, P. M., Salpekar, M., & Tejan, P. K. (2018). Agricultural practices Improvement Using IoT Enabled SMART Sensors. 2018 International Conference on Smart City and Emerging Technology, ICSCET 2018. https://doi.org/10.1109/ICSCET.2018.8537291
Gutierrez, L., Piras, F., & Paolo Roggero, P. (2015). A Global Vector Autoregression Model for the Analysis of Wheat Export Prices. American Journal of Agricultural Economics, 97(5), 1494–1511. https://doi.org/10.1093/AJAE/AAU103
Herrera, R. J., & Garcia-Bertrand, R. (2018). The Agricultural Revolutions. In Ancestral DNA, Human Origins, and Migrations (pp. 475–509). Elsevier. https://doi.org/10.1016/B978-0-12-804124-6.00013-6
Holderness, B. A., & Beckett, J. V. (1991). The Agricultural Revolution. The Economic History Review, 44(1), 177. https://doi.org/10.2307/2597496
Huo, J., Deng, Q., Fan, T., He, G., Hu, X., Hong, X., Chen, H., Luo, S., Wang, Z., & Chen, D. (2017). Advances in polydiacetylene development for the design of side chain groups in smart material applications – a mini review. Polymer Chemistry, 8(48), 7438–7445. https://doi.org/10.1039/C7PY01396E
Islam Sarker, M. N., Wu, M., Chanthamith, B., Yusufzada, S., Li, D., & Zhang, J. (2019). Big Data Driven Smart Agriculture: Pathway for Sustainable Development. 2019 2nd International Conference on Artificial Intelligence and Big Data, ICAIBD 2019, 60–65. https://doi.org/10.1109/ICAIBD.2019.8836982
Iwasaki, W., Morita, N., & Nagata, M. P. B. (2019). IoT sensors for smart livestock management. In Chemical, Gas, and Biosensors for Internet of Things and Related Applications (pp. 207–221). Elsevier. https://doi.org/10.1016/B978-0-12-815409-0.00015-2
Jaiswal, B., & Agrawal, M. (2020). Carbon Footprints of Agriculture Sector. Environmental Footprints and Eco-Design of Products and Processes, 81–99. https://doi.org/10.1007/978-981-13-7916-1_4/COVER
Jiang, Leiwen, Young, & Hardee. (2008). Population, urbanization and the environment. World Watch , 5, 34–39.
Jie, C., Jing-zhang, C., Man-zhi, T., & Zi-tong, G. (2002). Soil degradation: a global problem endangering sustainable development. Journal of Geographical Sciences, 12(2), 243–252. https://doi.org/10.1007/BF02837480
Kalatzis, N., Marianos, N., & Chatzipapadopoulos, F. (2019). IoT and data interoperability in agriculture: A case study on the gaiasenseTM smart farming solution. Global IoT Summit, GIoTS 2019 - Proceedings. https://doi.org/10.1109/GIOTS.2019.8766423
Kaloxylos, A., Eigenmann, R., Teye, F., Politopoulou, Z., Wolfert, S., Shrank, C., Dillinger, M., Lampropoulou, I., Antoniou, E., Pesonen, L., Nicole, H., Thomas, F., Alonistioti, N., & Kormentzas, G. (2012). Farm management systems and the Future Internet era. Computers and Electronics in Agriculture, 89, 130–144. https://doi.org/10.1016/J.COMPAG.2012.09.002
Kaloxylos, A., Groumas, A., Sarris, V., Katsikas, L., Magdalinos, P., Antoniou, E., Politopoulou, Z., Wolfert, S., Brewster, C., Eigenmann, R., & Maestre Terol, C. (2014). A cloud-based Farm Management System: Architecture and implementation. Computers and Electronics in Agriculture, 100, 168–179. https://doi.org/10.1016/J.COMPAG.2013.11.014
Kamila, S. (2013). Introduction, Classification and Applications of Smart Materials: An Overview. American Journal of Applied Sciences, 10(8), 876–880. https://doi.org/10.3844/AJASSP.2013.876.880
Katzman, M. T. (1974). The Von Thuenen Paradigm, the Industrial‐Urban Hypothesis, and the Spatial Structure of Agriculture. American Journal of Agricultural Economics, 56(4), 683–696. https://doi.org/10.2307/1239298
Kayad, A., Sozzi, M., Gatto, S., Whelan, B., Sartori, L., & Marinello, F. (2021). Ten years of corn yield dynamics at field scale under digital agriculture solutions: A case study from North Italy. Computers and Electronics in Agriculture, 185, 106126. https://doi.org/10.1016/J.COMPAG.2021.106126
Khan, Z. R., Pittchar, J. O., Midega, C. A. O., & Pickett, J. A. (2018). Push-Pull Farming System Controls Fall Armyworm: Lessons from Africa. Outlooks on Pest Management, 29(5), 220–224. https://doi.org/10.1564/V29_OCT_09
Klonsky, K., & Greene, C. R. (2005). Widespread Adoption of Organic Agriculture in the US: Are Market-Driven Policies Enough? https://doi.org/10.22004/AG.ECON.19382
Korunoski, M., Stojkoska, B. R., & Trivodaliev, K. (2019). Internet of Things Solution for Intelligent Air Pollution Prediction and Visualization. EUROCON 2019 - 18th International Conference on Smart Technologies.
https://doi.org/10.1109/EUROCON.2019.8861609
KRISHNA, K. R. (2021). AGRICULTURAL DRONES : a peaceful pursuit. APPLE ACADEMIC PRESS. https://www.routledge.com/Agricultural-Drones-A-Peaceful-Pursuit/Krishna/p/book/9781774636428
Krnjaić, D., Mišić, D., & Ašanin, R. (2005). Investigation of sensitivity and resistance to antibiotics and chemotherapeutics in E. coli strains isolated from animals bred in intensive farming conditions. Acta Veterinaria, 55(5–6), 501–509. https://doi.org/10.2298/AVB0506501K
Kumari, U., Swamy, K., Gupta, A., Karri, R. R., & Meikap, B. C. (2021). Global water challenge and future perspective. In Green Technologies for the Defluoridation of Water (pp. 197–212). Elsevier. https://doi.org/10.1016/B978-0-323-85768-0.00002-6
Lacoste, M., Lawes, R., Ducourtieux, O., & Flower, K. (2016). Comparative agriculture methods capture distinct production practices across a broadacre Australian landscape. Agriculture, Ecosystems & Environment, 233, 381–395.
https://doi.org/10.1016/J.AGEE.2016.09.020
Lal, N., Qamar, S., Agarwal, S., Agarwal, A., & Verma, S. (2023). Internet of things : applications for sustainable development (illustrated). CRC Press. https://books.google.com/books/about/Internet_of_Things.html?id=RfGyEAAAQBAJ
Lasantha, K. K., & Adikaram, B. (2020). Effectiveness of IoT based automation system for salad cucumber (cucumis sativus) cultivation in protected house under Sri Lankan condition. Detection of Linear Regression by removing Outliers View project A Standalone Samba-NIS/NFS Server Model For Windows and Linux Dual Boot Clients with Individual User Authentication View project.
https://www.researchgate.net/publication/350897627
Lee, M., Hwang, J., & Yoe, H. (2013). Agricultural production system based on IoT. Proceedings - 16th IEEE International Conference on Computational Science and Engineering, CSE 2013, 833–837. https://doi.org/10.1109/CSE.2013.126
Leilah, A. A., & Al-Khateeb, S. A. (2005). Statistical analysis of wheat yield under drought conditions. Journal of Arid Environments, 61(3), 483–496. https://doi.org/10.1016/J.JARIDENV.2004.10.011
Li, J., & Song, W. (2022). Food Security Review Based on Bibliometrics from 1991 to 2021. Foods 2022, Vol. 11, Page 3915, 11(23), 3915. https://doi.org/10.3390/FOODS11233915
Li, Y., & Zhang, J. (1999). Agricultural diffuse pollution from fertilisers and pesticides in China. Water Science and Technology, 39(3), 25–32. https://doi.org/10.2166/WST.1999.0129
Luthra, S., Garg, D., Mangla, S. K., & Singh Berwal, Y. P. (2018). Analyzing challenges to Internet of Things (IoT) adoption and diffusion: An Indian context. Procedia Computer Science, 125, 733–739. https://doi.org/10.1016/J.PROCS.2017.12.094
Madushanki, A. A. R., Halgamuge, M. N., Wirasagoda, W. A. H. S., & Syed, A. (2019). Adoption of the Internet of Things (IoT) in Agriculture and Smart Farming towards Urban Greening: A Review. International Journal of Advanced Computer Science and Applications, 10(4), 11–28.
https://doi.org/10.14569/IJACSA.2019.0100402
Mark, R. (2019). Ethics of Using AI and Big Data in Agriculture: The Case of a Large Agriculture Multinational. The ORBIT Journal, 2(2), 1–27. https://doi.org/10.29297/ORBIT.V2I2.109
Maximillian, J., Brusseau, M. L., Glenn, E. P., & Matthias, A. D. (2019). Pollution and Environmental Perturbations in the Global System. In Environmental and Pollution Science (pp. 457–476). Elsevier. https://doi.org/10.1016/B978-0-12-814719-1.00025-2
McKellar, Q. A. (1999). Antibiotics and resistance in farm animals. Nutrition & Food Science, 99(4), 178–184. https://doi.org/10.1108/00346659910270918/FULL/XML
Medela, A., Cendón, B., González, L., Crespo, R., & Nevares, I. (2013). IoT multiplatform networking to monitor and control wineries and vineyards | IEEE Conference Publication | IEEE Xplore. IEEE. https://ieeexplore.ieee.org/document/6633525
Misra, N. N., Dixit, Y., Al-Mallahi, A., Bhullar, M. S., Upadhyay, R., & Martynenko, A. (2022). IoT, Big Data, and Artificial Intelligence in Agriculture and Food Industry. IEEE Internet of Things Journal, 9(9), 6305–6324.
https://doi.org/10.1109/JIOT.2020.2998584
Mitchell, K., Beesley, L., Šípek, V., & Trakal, L. (2022). Biochar and its potential to increase water, trace element, and nutrient retention in soils. Biochar in Agriculture for Achieving Sustainable Development Goals, 25–33.
https://doi.org/10.1016/B978-0-323-85343-9.00008-2
Mondal, T., Yadav, R. P., Meena, V. S., Choudhury, M., Nath, S., Bisht, J. K., Mishra, P. K., Arya, S. K., & Pattanayak, A. (2020). Biomass yield and nutrient content of dual purpose wheat in the fruit based cropping system in the North-Western mid-Himalaya ecosystem, India. Field Crops Research, 247, 107700.
https://doi.org/10.1016/J.FCR.2019.107700
Moore, J. W. (2010). The End of the Road? Agricultural Revolutions in the Capitalist World-Ecology, 1450-2010. Journal of Agrarian Change, 10(3), 389–413. https://doi.org/10.1111/j.1471-0366.2010.00276.x
Morris, S., & Jones, H. (2004). Examples of commercial applications using snjall UAVs. Collection of Technical Papers - AIAA 3rd “Unmanned-Unlimited” Technical Conference, Workshop, and Exhibit, 1, 387–395. https://doi.org/10.2514/6.2004-6471
Nair, K. P. P. (2009). Chapter 4 The Agronomy and Economy of Some Important Industrial Crops (pp. 183–313).
https://doi.org/10.1016/S0065-2113(08)00804-3
Nasreddine, L., Hwalla, N., Sibai, A., Hamzé, M., & Parent-Massin, D. (2006). Food consumption patterns in an adult urban population in Beirut, Lebanon. Public Health Nutrition, 9(2), 194–203. https://doi.org/10.1079/PHN2005855
National Geographic. (2016). Urbanization Causes and Impacts | National Geographic.
https://www.nationalgeographic.com/environment/article/urban-threats
National Geographic. (2022a). Staple Food Crops of the World.
https://education.nationalgeographic.org/resource/wbt-staple-food-crops-world/
National Geographic. (2022b). The Development of Agriculture.https://education.nationalgeographic.org/resource/development-agriculture/
Niassy, S., Agbodzavu, M. K., Mudereri, B. T., Kamalongo, D., Ligowe, I., Hailu, G., Kimathi, E., Jere, Z., Ochatum, N., Pittchar, J., Kassie, M., & Khan, Z. (2022). Performance of Push–Pull Technology in Low-Fertility Soils under Conventional and Conservation Agriculture Farming Systems in Malawi. Sustainability (Switzerland), 14(4).
https://doi.org/10.3390/SU14042162
Pathan, M., Patel, N., Yagnik, H., & Shah, M. (2020). Artificial cognition for applications in smart agriculture: A comprehensive review. Artificial Intelligence in Agriculture, 4, 81–95.
https://doi.org/10.1016/J.AIIA.2020.06.001
Patodkar, V., Simant, S., ShubhamSharma, Shah, C., & Godse, S. (2015). E-Agro Android Application (Integrated Farming Management Systems). International Journal of Engineering Research and General Science, 3(3).
http://pnrsolution.org/Datacenter/Vol3/Issue3/61.pdf
Pereira, L. S., Oweis, T., & Zairi, A. (2002). Irrigation management under water scarcity. Agricultural Water Management, 57(3), 175–206. https://doi.org/10.1016/S0378-3774(02)00075-6
Ping, H., Wang, J., Ma, Z., & Du, Y. (2018). Mini-review of application of IoT technology in monitoring agricultural products quality and safety. International Journal of Agricultural and Biological Engineering, 11(5), 35–45.
https://doi.org/10.25165/IJABE.V11I5.3092
Raj, J. S. (2020). A Novel Information Processing in IoT Based Real Time Health Care Monitoring System. Journal of Electronics and Informatics, 02(03), 188–196.
https://doi.org/10.36548/jei.2020.3.006
Reddy Maddikunta, P. K., Hakak, S., Alazab, M., Bhattacharya, S., Gadekallu, T. R., Khan, W. Z., & Pham, Q. V. (2021). Unmanned Aerial Vehicles in Smart Agriculture: Applications, Requirements, and Challenges. IEEE Sensors Journal, 21(16), 17608–17619. https://doi.org/10.1109/JSEN.2021.3049471
Research Institute (IFPRI), I. F. P. (2014). Food security in a world of natural resource scarcity The role of agricultural technologies.
https://doi.org/10.2499/9780896298477
Rettore de Araujo Zanella, A., da Silva, E., & Pessoa Albini, L. C. (2020). Security challenges to smart agriculture: Current state, key issues, and future directions. Array, 8, 100048. https://doi.org/10.1016/J.ARRAY.2020.100048
Roberts, W. S., & Swinton, S. M. (1996). Economic methods for comparing alternative crop production systems: A review of the literature. American Journal of Alternative Agriculture, 11(1), 10–17. https://doi.org/10.1017/S0889189300006652
Roopaei, M., Rad, P., & Choo, K. K. R. (2017). Cloud of things in smart agriculture: Intelligent irrigation monitoring by thermal imaging. IEEE Cloud Computing, 4(1), 10–15.
https://doi.org/10.1109/MCC.2017.5
Sabater, S., Elosegi, A., & Ludwig, R. (2019). Multiple Stressors in River Ecosystems. Elsevier. https://doi.org/10.1016/C2016-0-01770-9
Sabu, K. M., & Kumar, T. K. M. (2020). Predictive analytics in Agriculture: Forecasting prices of Arecanuts in Kerala. Procedia Computer Science, 171, 699–708.
https://doi.org/10.1016/J.PROCS.2020.04.076
Saha, H. N., Auddy, S., Chatterjee, A., Pal, S., Pandey, S., Singh, R., Singh, R., Sharan, P., Banerjee, S., Ghosh, D., & Maity, A. (2017). Pollution control using Internet of Things (IoT). 2017 8th Industrial Automation and Electromechanical Engineering Conference, IEMECON 2017, 65–68.
https://doi.org/10.1109/IEMECON.2017.8079563
Saiz-Rubio, V., & Rovira-Más, F. (2020). From Smart Farming towards Agriculture 5.0: A Review on Crop Data Management. Agronomy 2020, Vol. 10, Page 207, 10(2), 207.
https://doi.org/10.3390/AGRONOMY10020207
San, K. (2023). High prices not permanent | The Star.https://www.thestar.com.my/news/nation/2023/02/06/high-prices-not-permanent
Santelices, B. (1999). A conceptual framework for marine agronomy *. In Hydrobiologia (Vol. 398).
Saxena, M., & Dutta, S. (2020). Improved the efficiency of IoT in agriculture by introduction optimum energy harvesting in WSN. 2020 International Conference on Innovative Trends in Information Technology, ICITIIT 2020. https://doi.org/10.1109/ICITIIT49094.2020.907159
Sehrawat, D., & Gill, N. S. (2019). Smart Sensors: Analysis of Different Types of IoT Sensors. 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI), 523–528. https://doi.org/10.1109/ICOEI.2019.8862778
Sengupta, J., Ruj, S., & Das Bit, S. (2020). A Comprehensive Survey on Attacks, Security Issues and Blockchain Solutions for IoT and IIoT. Journal of Network and Computer Applications, 149, 102481.https://doi.org/10.1016/J.JNCA.2019.102481
Seufert, V., Ramankutty, N., & Foley, J. A. (2012). Comparing the yields of organic and conventional agriculture. Nature, 485(7397), 229–232. https://doi.org/10.1038/nature11069
Shahidi, F. (1990). Rapeseed and Canola: Global Production and Distribution. In Canola and Rapeseed (pp. 3–13). Springer US.
https://doi.org/10.1007/978-1-4615-3912-4_1
Shiferaw, B., Wani, S., & Rao, G. (2003). Irrigation Investments and Groundwater Depletion in Indian Semi-Arid Villages:The Effect of Alternative Water Pricing Regimes. Working Paper Series no.17 Socio Economic Policy.
Shmueli, G., & Koppius, O. R. (2011). Predictive analytics in information systems research. MIS Quarterly: Management Information Systems, 35(3), 553–572. https://doi.org/10.2307/23042796
Siboni, S., Sachidananda, V., Meidan, Y., Bohadana, M., Mathov, Y., Bhairav, S., Shabtai, A., & Elovici, Y. (2019). Security Testbed for Internet-of-Things Devices. IEEE Transactions on Reliability, 68(1), 23–44. https://doi.org/10.1109/TR.2018.2864536
Sistler, F. (1987). Robotics and intelligent machines in agriculture. IEEE Journal on Robotics and Automation, 3(1), 3–6.
https://doi.org/10.1109/JRA.1987.1087074
Smith, O. (2023). Fruit and vegetable shortage could last until May, say growers - BBC News. https://www.bbc.com/news/business-64743704
Sommarribas, A., Becker, F., & Nienaber, B. (2015). Determining labour shortages and the need for labour migration from third countries in the EU.
Spillman, W. B., Sirkis, J. S., & Gardiner, P. T. (1996). Smart materials and structures: what are they? Smart Materials and Structures, 5(3), 247. https://doi.org/10.1088/0964-1726/5/3/002
Srilakshmi, A., Rakkini, J., Sekar, K. R., & Manikandan, R. (2018). A Comparative study on Internet Of Things (IoT) and its applications in Smart Agriculture. Pharmacognosy Journal, 10(2), 260–264. https://doi.org/10.5530/pj.2018.2.46
Suebsombut, P., Chernbumroong, S., Sureephong, P., Jaroenwanit, P., Phuensane, P., & Sekhari, A. (2020). Comparison of Smart Agriculture Literacy of Farmers in Thailand. 2020 Joint International Conference on Digital Arts, Media and Technology with ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunications Engineering, ECTI DAMT and NCON 2020, 242–245.
https://doi.org/10.1109/ECTIDAMTNCON48261.2020.9090695
Sushanth, G., & Sujatha, S. (2018). IOT Based Smart Agriculture System. 2018 International Conference on Wireless Communications, Signal Processing and Networking, WiSPNET 2018. https://doi.org/10.1109/WISPNET.2018.8538702
Tellnes, G. (2005). President’s Column: positive and negative public health effects of urbanisation. European Journal of Public Health, 15(5), 552–553. https://doi.org/10.1093/EURPUB/CKI175
Tenzin, S., Siyang, S., Pobkrut, T., & Kerdcharoen, T. (2017). Low cost weather station for climate-smart agriculture. 2017 9th International Conference on Knowledge and Smart Technology: Crunching Information of Everything, KST 2017, 172–177. https://doi.org/10.1109/KST.2017.7886085
Terence, S., & Purushothaman, G. (2020). Systematic review of Internet of Things in smart farming. Transactions on Emerging Telecommunications Technologies, 31(6), e3958. https://doi.org/10.1002/ETT.3958
The agricultural revolution of the 20th century. (2001). Choice Reviews Online, 38(08), 38-4459-38–4459. https://doi.org/10.5860/CHOICE.38-4459
The Heavy Impact of Covid-19 on the Agriculture Sector and the Food Supply Chain – Penang Institute. (2020).
The Sun Daily. (2023). Food prices push annual inflation in UK shops to new high. https://www.thesundaily.my/business/food-prices-push-annual-inflation-in-uk-shops-to-new-high-DJ10801075
Tiwana, N. S., Jerath, N., Singh, G., & Singh, R. (2009). Pesticide Pollution in Punjab: A Review - IOS Press. Asian Journal of Water, Environment and Pollution, 6, 89–96.
https://content.iospress.com/articles/asian-journal-of-water-environment-and-pollution/ajw6-1-10
Tong-ke, F. (2013). Smart Agriculture Based on Cloud Computing and IOT. Journal of Convergence Information Technology, 8(2), 210–216. https://doi.org/10.4156/JCIT.VOL8.ISSUE2.26
Torquebiau, E., Rosenzweig, C., Chatrchyan, A. M., Andrieu, N., & Khosla, R. (2018). Identifying Climate-smart agriculture research needs. Cahiers Agricultures, 27(2), 26001.
https://doi.org/10.1051/CAGRI/2018010
Tseng, S. P., Li, Y. R., & Wang, M. C. (2018). An application of internet of things on sustainable aquaculture system. 2016 International Conference on Orange Technologies, ICOT 2016, 2018-January, 17–19. https://doi.org/10.1109/ICOT.2016.8278969
Tsouvalis, J., Seymour, S., & Watkins, C. (2000). Exploring Knowledge-Cultures: Precision Farming, Yield Mapping, and the Expert–Farmer Interface. Http://Dx.Doi.Org/10.1068/A32138, 32(5), 909–924. https://doi.org/10.1068/A32138
Turner, B. L., & Stephen, B. B. (1988). Comparative Farming Systems. Bulletin of Science, Technology & Society, 8(4), 450–450.
https://doi.org/10.1177/0270467688008004114
USDA. (2023a). USDA ERS - Agricultural Markets in Russia and Ukraine.
https://www.ers.usda.gov/newsroom/trending-topics/agricultural-markets-in-russia-and-ukraine/
USDA. (2023b). USDA ERS - Summary Findings. https://www.ers.usda.gov/data-products/food-price-outlook/summary-findings/
van der Burg, S., Bogaardt, M. J., & Wolfert, S. (2022). Ethics of smart farming: Current questions and directions for responsible innovation towards the future.
Https://Doi.Org/10.1016/j.Njas.2019.01.001,90–91, 100289.
https://doi.org/10.1016/J.NJAS.2019.01.001
Varghese, R., & Sharma, S. (2019). Affordable Smart Farming Using IoT and Machine Learning. Proceedings of the 2nd International Conference on Intelligent Computing and Control Systems, ICICCS 2018, 645–650.
https://doi.org/10.1109/ICCONS.2018.8663044
Veraart, F. (2018). Agriculture and Foods: Overproduction and Overconsumption. In Well-being, Sustainability and Social Development (pp. 397–416). Springer International Publishing. https://doi.org/10.1007/978-3-319-76696-6_18
Villamil, S., Hernández, C., & Tarazona, G. (2020). An overview of internet of things. Telkomnika (Telecommunication Computing Electronics and Control), 18(5), 2320–2327.
https://doi.org/10.12928/TELKOMNIKA.v18i5.1591
Vitali, G., Francia, M., Golfarelli, M., & Canavari, M. (2021). Crop Management with the IoT: An Interdisciplinary Survey. Agronomy 2021, Vol. 11, Page 181, 11(1), 181.
https://doi.org/10.3390/AGRONOMY11010181
Wallace, R. G., & Kock, R. A. (2012). Whose Food Footprint? Capitalism, Agriculture and the Environment. Https://Doi.Org/10.1177/194277861200500106,5(1), 63–83.
https://doi.org/10.1177/194277861200500106
Wang, X., Cheng, R., Cheng, L., & Zhong, Z. (2018). Lipoyl Ester Terminated Star PLGA as a Simple and Smart Material for Controlled Drug Delivery Application. Biomacromolecules, 19(4), 1368–1373. https://doi.org/10.1021/ACS.BIOMAC.8B00130/SUPPL_FILE/BM8B00130_SI_001.PDF
Wang, X., Luo, Y., Huang, K., & Cheng, N. (2022). Biosensor for agriculture and food safety: Recent advances and future perspectives. Advanced Agrochem, 1(1), 3–6.
https://doi.org/10.1016/j.aac.2022.08.002
Weis, M., Gutjahr, C., Ayala, V. R., Gerhards, R., Ritter, C., & Schölderle, F. (2008). Precision farming for weed management: Techniques. Gesunde Pflanzen, 60(4), 171–181. https://doi.org/10.1007/S10343-008-0195-1/METRICS
White, C. (2014). Understanding water scarcity: Definitions and measurements. Global Water: Issues and Insights.
https://doi.org/10.22459/GW.05.2014.28
Why Are Eggs So Expensive Right Now? (n.d.). Retrieved March 22, 2023, from
https://www.today.com/food/groceries/why-are-eggs-so-expensive-rcna65558
Williams, G. (2023). Why Are Eggs So Expensive Right Now? | Spending | U.S. News. https://money.usnews.com/money/personal-finance/spending/articles/why-are-eggs-so-expensive-right-now
Wolfert, S., Ge, L., Verdouw, C., & Bogaardt, M. J. (2017). Big Data in Smart Farming – A review. Agricultural Systems, 153, 69–80. https://doi.org/10.1016/J.AGSY.2017.01.023
World Health Organization. (2018). Drought. https://www.who.int/health-topics/drought?gclid=Cj0KCQjwt_qgBhDFARIsABcDjOfok0Wk3EewGGDJelTZY-436Y6VRdPrHcxuhh_UNtg9xBeoB8NIaAsaAjeJEALw_wcB#tab=tab_1
Xie, T., Huang, Z., Chi, Z., & Zhu, T. (2017). Minimizing amortized cost of the on-demand irrigation system in smart farms. Proceedings - 2017 3rd International Workshop on Cyber-Physical Systems for Smart Water Networks, CySWATER 2017, 43–46.
https://doi.org/10.1145/3055366.3055370
Xu, G., Shi, Y., Sun, X., & Shen, W. (2019). Internet of Things in Marine Environment Monitoring: A Review. Sensors 2019, Vol. 19, Page 1711, 19(7), 1711. https://doi.org/10.3390/S19071711
Yadav, R., & Kumar, V. (2021). A Literature Review of Challenges in Internet of Things. Proceedings - 2021 3rd International Conference on Advances in Computing, Communication Control and Networking, ICAC3N 2021, 729–733. https://doi.org/10.1109/ICAC3N53548.2021.9725470
Yang, M. Der, Hsu, Y. C., Tseng, W. C., Lu, C. Y., Yang, C. Y., Lai, M. H., & Wu, D. H. (2021). Assessment of Grain Harvest Moisture Content Using Machine Learning on Smartphone Images for Optimal Harvest Timing. Sensors 2021, Vol. 21, Page 5875, 21(17), 5875.
https://doi.org/10.3390/S21175875
Yeshe, A., Gourkhede, P. H., Vaidya Vasantrao, P. H., Marathwada, N., & Vidyapeeth, K. (2022). Blue River Technology: Futuristic Approach of Precision Farming. 2(7).
https://www.researchgate.net/publication/359739819
Zambon, I., Cecchini, M., Egidi, G., Saporito, M. G., & Colantoni, A. (2019). Revolution 4.0: Industry vs. Agriculture in a Future Development for SMEs. Processes, 7(1), 36.
https://doi.org/10.3390/pr7010036
ZANDEN, J. L. VAN. (1991). The first green revolution: the growth of production and productivity in European agriculture, 1870-1914. The Economic History Review, 44(2), 215–239. https://doi.org/10.1111/j.1468-0289.1991.tb01840.x
Zhu, X. (2004). Water Environmental Pollution Caused by Agricultural Non-Point Sources and Prevention Measures. Resource Development & Market.
All Content should be original and unpublished.