Kinetic Aspects and Thermo chemical Analysis of Silver Cementation from Residual X Ray Fixer by Cementation on Zinc
Downloads
Silver cementation with zinc from residual X ray fixers was studied. The chemical analysis of XRF showed 5.16 g L-1 (Ag), 0.56 g L-1 (Al), 5.24 g L-1 (K), 7.02 g L-1 (Na) and 172.56 g L-1 (S). The process was thermodynamically simulated using Fact Sage software by constructing the potential-pH diagram at 298.15 K (25ºC). This diagram showed that the process leads to metallic silver together with residual unreacted zinc. The parameters experimentally evaluated were: pH (ranged from 3.0 to 7.0), temperature (ranged from 298.15 K (25°C) to 318.15 K (45°C)) and the Ag:Zn weight ratio (1:1, 1:2, 1:3, 1:4 and 1:5). The maxim silver cementation (99.99 % Ag) was obtained at 90 s of reaction, pH 6.0, 318 K (45°C) and Ag:Zn equal to 1:3. Silver cementation increases whit the Ag:Zn weight ratio, pH and temperature increases. The X-Ray and SEM-EDS results showed that the cementation product is formed by Ag and Zn.
Rivera I. L., A. Roca, M.Cruells, F. Patiño and E. Salinas., Hydrometalurgy. 2007, 89, 89-98. http://dx.doi.org/10.1016/j.hydromet.2007.06.001
Agrawal, R. D., Journal of the South African Institute of Mining and Metallurgy. 1982, 4, 106-111.
Gabriela V. Figueroa Martínez, José R. Parga Torres, Jesús L. Valenzuela García, Guillermo C. Tiburcio Munive, Gregorio González Zamarripa., Advances in Chemical Engineering and Science. 2012, 2, 342-349. DOI: 10.4236/aces.2012.23040.
Amin, N.K., Hydrometallurgy. 2007, 89, 224-232. doi.org/10.1016/j.hydromet.2007.07.007.
Mohammad Sadegh Safarzadeh, Davood Moradkhani, Mehdi Ojaghi Ilkhchi.,. Chemical Engineering and Processing: Process Intensification. 2007, 46, 12, 1332-1340. doi.org/10.1016/j.cep.2006.10.014
Zhike Wang, Donghui Chen, Liang Chen.. 2007, 20, 6, 581-590.
doi.org/10.1016/j.mineng.2006.12.009
Lamya, R. M. and Lorenzen, L.,. The Journal of the South African Institute of Mining and Metallurgy. 2005. 21-28.
http://www.saimm.co.za/Journal/v105n01p021.pdf
Dib, A., Makhloufi, L.,. Chemical Engineering Journal. 2007, 130, 1, 39-44.
doi.org/10.1016/j.cej.2006.10.026
G. Viramontes Gamboa, M. Medina Noyola, A. López Valdivieso.,. Hydrometallurgy. 2005, 76, 3-4, 193-205.
doi.org/10.1016/j.hydromet.2004.11.005.
Nizamettin Demirkıran, Ahmet Ekmekyapar, Asım Künkül, Ahmet Baysar., 2007. 82, 2, 80-85. doi.org/10.1016/j.minpro.2006.10.005.
Boyan, S. Boyanov, Victoria, V. Konareva, Nikolai, K. Kolev.,. Hydrometallurgy. 2004. 73, 163-168.
doi.org/10.1016/j.hydromet.2003.09.002
J. Brent Hiskey, Jaeheon Lee.,. Hydrometallurgy. 2003. 69, 1-3, 45-56. doi.org/10.1016/S0304-386X(03)00003-3.
Karavasteva M.,. Canadian Metallurgical Quarterly. 1999. 38, 3, 207-210. doi.org/10.1179/cmq.1999.38.3.207
D.R. Lide: CRC Handbook of Chemistry and Physics. 71st ed., CRC Press, Boca Raton, FL, 1990-1991, pp.8-38.
W.T. Thompson, C.W. Bale, and A.D. Pelton: Facility for the Analysis of Chemical Thermodynamics (FACTSage), Ecole Poly technique, Montreal. 2015, http://www.crct.polymtl.ca.
S. Gamini.,. Hydrometallurgy. 2006. 81, 2, 75-85. doi.org/10.1016/j.hydromet.2005.12.001.
E. Guerra, Dreisinger, D. B.,. Hydrometallurgy. 1999. 51, 2, 155-172. doi.org/10.1016/S0304-386X(98)00061-9.
Trina M. Dreher, Amy Nelson, George P. Demopoulos, Dimitrios Filippou.,. Hydrometallurgy. 2001. 60, 2, 105-116. doi.org/10.1016/S0304-386X(00)00152-3
All Content should be original and unpublished.