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Vegetation Indices (VIs) obtained from remote sensing (RS) based canopies are quite simple and 

effective algorithms for quantitative and qualitative evaluations of vegetation cover, vigor, and 

growth dynamics, among other applications. These indices have been widely implemented within 

RS application using different airborne and satellite platforms with recent advances using 

Unmanned Aerial Vehicles (UAV). Vegetation indices (VIs) are different combination of surface 

reflectance at two or more wavelength designed to highlight a particular property of vegetation. 

Crop yield estimates at regional scale are essential for proper planning and policy making in the 

agriculture sector of the country. Remotely sensed images are provided great potential in crop 

growth and yield over large area owing to their spatial and temporal coverage. Over the last few 

decades, the most commonly used yield-vegetation index has been criticized because of its strong 

experiential character.  To predict of wheat yield using normalized difference vegetation index 

(NDVI) and different weather parameter during different phases of crop growth.  To improve crop 

production and prediction depend upon the crops factors such as crop genotype, soil characteristics, 

agronomic practices, weather condition and biotic stresses that can be identify by remote sensing 

indices at instant time. The present study introduces the spectral characteristics of vegetation and 

application in crop production and status of crop growth at course of growth. . To improve crop 

production and prediction depend on remote sensing indices sensitive to spectral reflectance of crop 

at instant time. 
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INTRODUCTION 

Remote sensing sensor capture reflectance of plant health, to  

monitor plant changes over the course of a growing season 

(Richardson et al., 2004).Remote sensing help to assessing 

crop condition based on satellite and ground images. 

Remote sensing techniques for detection of crop stress due 

to pests and diseases is based on the assumption that stresses 

induced by them interfere with photosynthesis and physical 

structure of the plant, affect absorption of light energy and 

thus alter the reflectance spectrum of plants (Ray S.S et 

al.,1999). Leaf chlorophyll content is an important variable 

for agricultural remote sensing because of its close 

relationship to leaf nitrogen content (Hunt et al., 2013). 

Mapping vegetation water status with remote sensing 

provides useful information to monitor plant drought stress. 

The timely and accurate estimation of grain yield and annual 

fluctuation can help governments to plan effective strategies 

(Ren et al., 2008). From space agricultural monitoring to 

pre-harvest assessment crop yield and production has been a 

topic of research since the early 1970s (Wall et al., 2007). 

This model integrates agronomic parameters and 

meteorological factors, which offer unique advantages in 

predicting crop yield in large-scale monitoring (Jiao et al., 

2005; Wang et al.,2012). Spectral reflectance is a new, real 

time and non-destructive Hyperspectral remote sensing  

application to monitor plant water status and physiological 

changes. The spectral reflectance responses induced by 

water stress reflect the interaction and coupling of carbon, 

nitrogen and water cycle (L. Chang and Liu 2016). 

Normalized Difference Vegetation Index (NDVI): 

Reflectance difference in the visible and NIR 

regions have led to the development of spectral vegetation 

indices. Spectral vegetation indices are mathematical 

transformation of reflectance values at different parts of the 

spectrum, intended to normalize the measurement made in 

varied environmental conditions (Riedell and Blackmer, 

1999). 

Normalized Difference Vegetation Index (NDVI) is 

the normalized difference of reflectance in NIR and Red 

bands (Rouse et al. 1974) 

NDVI= (RNIR-RRED) / (RNIR+RRED) 

http://www.rajournals.in/index.php/rajar
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Ratio Vegetation Index (RVI) is the ratio of the 

reflectance in NIR and red band. They were used to detect 

plant stress and can be saturated at high leaf area index 

(LAI) (Ranjitha et al. 2014). 

Spectral Response of Vegetation: 

Green plants have a unique spectral reflectance 

influenced by their structure and composition. The 

proportion of radiation reflected in different parts of the 

spectrum depends on the state, structure and composition of 

the plant. In general, healthy plants and dense canopies will 

reflect more radiation especially in the near infrared region 

of the spectrum. 

In the visible part of the spectrum (0.4-0.7 µm), 

plants absorb light in the blue (0.45 µm) and red (0.60 µm) 

regions and reflect relatively more in the green portion of 

the spectrum due to the presence of chlorophyll. High 

photosynthesis activity will result in lower reflectance in the 

red region and high reflectance in infrared region of the 

spectrum. In some cases where plants are subjected to 

moisture stress or other conditions that hinder growth, the 

chlorophyll production will decrease. This in turn leads to 

less absorption in the blue and red bands (Tempfli et al . 

2009; Woldu, 1997).  In the NIR portion of the spectrum 

(0.7-2.5 µm), green plants reflectance increases to 40-60 %. 

Beyond, (1.3 µm), there are dips in the reflectance curve due 

to absorption by water in the leaves, more free water result 

in less reflectance. As the leaves dry out or as the plant 

ripens or senescence or become diseased or cells die, there is 

reduction in chlorophyll pigment. That result in the general 

increase in reflectance in the visible spectrum and a 

reduction in reflectance in the middle infrared (MIR) portion 

of the spectrum due to cell deterioration. Thus, the spectral 

response of crops canopy are influenced by plant health, 

percentage of ground cover, growth stage, difference in 

cultural practices, stress condition and the canopy 

architecture (Verma et al.1998). The differential reflectance 

of green plant in the visible and infrared parts of radiation 

makes it possible for the detection of green plants from 

satellite data because other features on earth surface do not 

have such unique step-like characteristics in the 0.65-0.75 

µm spectral range. This signature is unique to green plants 

only and thus this principle is used in vegetation indices 

(VIs) (Singh et al.2002). 

Spectral response of Monitoring pests and diseases 

patches: 

Hyperspectral images have great potential in 

detecting, diseases-stressed canopies through a spectra-

based classification including Minimum Noise Fraction 

(MNF) and Spectral Angle Mapping (SAM). Field spectra 

analysis indicated that the most valuable wavelength were 

between 0.7-0.9 micro meter for remote sensing of the late 

blight on tomatoes. The mapped diseases distribution at 

stage in which a minimum of two lesions were on at least 

one leaf over two lesions were on over half the canopy 

leaves (Zhang et al .,2003). The mapping Ridolfia segetum 

weed patches in sunflower to implement SSWM techniques 

is feasible with aerial photography acquired when images 

are taken from 8 to 10 weeks before harvesting (Pena et al. 

2007). Remote sensing index (NDVI) was used to 

discriminate between weed infested and weed-free soybean 

and spectral response of NDVI was higher in weed-infested 

soybean than in weed-free soybean. Multispectral imagery 

has the potential for discriminating late-season weed 

infestations across a range of crop growth stages by using 

discriminate models developed from other imagery data sets 

(Koger et al. 2003).  

Hyperspectral remote sensing techniques are to 

identify and discern about difference in spectral reflection 

patterns of winter wheat canopies with and without 

greenbug damage. The growth conditions, greenbug-

damaged wheat canopies had higher reflectance in the 

visible range and less in the near infrared regions of the 

spectrum when compared with undamaged canopies (Mirik 

et al. 2006).  

The spectral reflectance of aphid infested canopy 

and health canopy had significant difference in NIR region. 

In the visible region, the reflectance peak occurred in 

healthy canopy at around 550-560 nm while this peak was 

lower by 31%in the aphid infested canopy (Kumar et al. 

2010). Hyperspectral reflectance spectra between healthy 

and infested plants showed significant decrease in visible 

regions (400-700 nm), while increased in the NIR region 

(770-860 nm). The sensitivity curve shows single peak in 

blue regions (at about 496 nm) which is characteristic of the 

Thrips damage (Ranjitha et al. 2014).   

It is possible to detect the stress caused by the two 

aphid species and to discriminate between the two aphid-

induced stresses in wheat using remote sensing. Ratio-based 

vegetation indices (based on 800/450 nm and 950/450 nm) 

were found useful in differentiating the two stresses in 

wheat (Yang et al. 2009) 

Prediction models: 

  Remotely sensed temperature and spectral indices 

showed that the best stage of prediction model based on leaf 

area index, dry matter production and grain yield. The 

cumulative Stress Degree Days (SDD) to showed best 

correlation with dry matter (r= -0.940) and grain yield (r= -

0.939) at period grain formation to harvest stage. Spectral 

indices (infrared/red, Normalized Difference (ND) showed 

best correlation to wheat yield prediction is between 

flowerings to milky stages (Das et al. 1993).  

 A robust yield method was developed for 

estimating and forecasting wheat yield in Hungary in the 

period of 2003–2015 using normalized difference vegetation 

index (NDVI) derived from the data of the Moderate 

Resolution Imaging Spectroradiometer. Estimation was 

made at 1-7 weeks before harvest. General yield unified 

robust reference index (GYURRI) vegetation index was 
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calculated each year using different curve-fitting methods to 

the NDVI time series. The correlation between GYURRI 

and country level yield data gave correlation coefficient (r) 

of 0.985. The differences between the estimated and actual 

yield data provided by the Hungarian Central Statistical 

Office were less than 5%, the average difference was 2.5 % 

(Bognar et al. 2017).  

Estimate of yield of cotton using linear time series 

trend and Evapotranspiration (AET) based model for 

irrigated area and an empirical model between the AET and 

un-irrigated area and the NDVI (Normalized Difference 

Vegetation Index) spectral profile data from the LISS I 

sensor on-board the Indian Remote Sensing (IRS) satellite. 

The cotton lint yield estimates from the above two different 

Models 1.2%relative deviation between them and differed 

by -14.4 and -13.1%, respectively, from the yield estimates 

given by the Department of Agriculture, Gujarat (Ren et al. 

2008). F. Lopresti et al. (2015) fitted on empirical model 

was fit between NDVI and yield to estimate wheat yield 

early 30 days before harvest corresponding to Julian day 

289.  

An experiment was conducted to study relationship 

between wheat yield and spectral indices during 1996-97 

and 1997-98 at the research farm, CCS HAU Hisar.  

Variations of ratio vegetation index (RVI), Normalized 

Difference Vegetation Index (NDVI), Difference Vegetation 

Index (DVI),Transformed Vegetation Index (TVI), 

Perpendicular Vegetation Index (PVI) and Greenness 

Vegetation Index (GVI) have been studied at anthesis stage 

under different moisture and nitrogen levels. Spectral 

indices were correlated with crop parameters and it was 

found that GVI was the best index for yield estimation 

(r=0.91) (Tempfli et al. 2009). 

 

CONCLUSIONS 

Hyperspectral analyses have been provided more 

information from remotely sensed imagery than before. 

Simple VIs combining visible and NIR bands have 

significantly improved the sensitivity of the detection of 

green vegetation. Therefore, each VIs  has its specific 

expression of green vegetation, its own suitability for 

specific uses, and some limiting factors. Therefore, for 

practical applications, the choice of a specific VIs needs to 

be made with caution by comprehensively considering and 

analyzing the advantages and limitations of existing VIs and 

then combine them to be applied in a specific environment. 

In this way, the usage of VIs can be tailored to specific 

applications, instrumentation used, and platforms. With the 

development of Hyperspectral and multispectral remote 

sensing technology, new VIs can be developed, which will 

broaden research areas. Hyperspectral remote sensing could 

be used to monitor disease on large scale farms, and it 

would become more common in the future, especially when 

images are commercially available and appropriate rapid 

image processing is possible. Remote sensing indices help to 

monitor crop health at highly temporal resolution to provide 

timely agronomic practices.  
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