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In the Modern World, everything will be systematically developed by using best modelling. In 

our article we will prepare and analyzed in the area of Dynamics of System of Two Prey and 

One Predator by using Holling Type – II Functional Response, and we designed the model such 

as First Prey and the Second prey a ratio – dependent response, where harvesting of each prey 

species is taken into consideration. And also, the model is used to study the Ecological 

Dynamics of the Fox – Antelope – Rabit (FAR) in a given habitat. We also focus the effect of 

harvesting on prey species. We discussed Local and Global Stability Analysis of the system 

were carried out, and also we analyze numerical simulation for particular variables and then, we 

conclude and show that the Result of Analysis of our model that the Three Species would co – 

exist if the Antelope and Rabbit were not harvesting beyond their Intrinsic Growth Rate (IGR). 

KEYWORDS: Hollings Type – II Functional Response, Local and Global Stability Analysis, Co – existing of species, 

Encounter rate, Stable ecological system, Crowley – Martin Model 

 

1. INTRODUCTION 

1.1. Basic concepts and relevant Definitions for our 

article. 

In our Real – World Systems are mostly complexity and have 

number of Interrelated Components are involved, among the 

various interrelated components the proposed this article will 

be focused on predator and prey interaction with prey 

harvesting. For the dynamic relationship between predator 

and their prey has long been and will continue to be one of 

the dominating themes in both colony ad Mathematical 

Ecology due to UniversalExistence and Importance. An 

important ubiquitous problem co – existing (or persistence) 

of species (Manju and Rachana – 2012); Again (Abrams – 

1996) studied a prey – predator Dynamics, where the predator 

species partially depends up on the prey species in a two-bath 

habitat and obtained the conditions for asymptotic stability. 

1.1.1. Functional Response 

A functional response is described as predators instantaneous 

per capita feeding rate as a function of prey (Hulling – 1959). 

This means that the consumptions rate of an individual 

predator depends on the prey density. Understanding and 

clearly qualifying functional response is at the heart of the 

Ecological Modelling. 

According to Abrams and Ginzburg – 2000, functional 

responses are generally categorized as: 

Prey – Density Dependent Response denoted by 𝑓(𝑚) and 

Ratio – Dependent as𝑓(𝑚 𝑝⁄ ) and Prey – Predator Density 

Dependent as𝑓(𝑚, 𝑝) 𝑤ℎ𝑒𝑟𝑒 𝑚, 𝑝 represent prey -predator 

population species respectively. In 1959 – Hulling introduced 

three types name as Holling Type – I, II and III, who 

categorized the prey – density responses. 

a. Holling Type – I 

Hulling Type – I, functional response which is the standard 

mass action or linear response as 

𝑓(𝑚) = 𝑎𝑚    (1) 

𝑊ℎ𝑒𝑟𝑒, 𝑎 > 0, it is the attack rate of the predator. Holling 

Type – I’s response is found in Passive Predators like 

spiders. The number of flies caught in the net is proportional 

to fly density. Prey mortality due to predation is constant. 

b. Holling Type – II 

Hulling Type – II, it is also called the Cyrtid Functional 

response and it is represented by the function 

𝑓(𝑚) =
𝑏𝑚

1+𝑐𝑚
                           (2) 

𝑊ℎ𝑒𝑟𝑒, 𝑏 𝑎𝑛𝑑 𝑐, they are positive constants that describe the 

effects of capture rate and handling time on the feeding rate 

of the predator (Skalski and Gillian – 2001). The Holling 
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Type – II response is the most common type of functional 

response and is well documented. According to (Sharov – 

1996), at low prey densities, the predator spends more than in 

searching the prey while at high prey densities, the predator 

spends more time handling the prey. Relating this t equation 

(2), we know that, at {
𝑎𝑡 𝐿𝑜𝑤 𝑃𝑟𝑒𝑦 𝐷𝑒𝑛𝑠𝑖𝑡𝑖𝑒𝑠    𝑏 > 𝑐
𝑎𝑡 𝐻𝑖𝑔ℎ 𝑃𝑟𝑒𝑦 𝐷𝑒𝑛𝑠𝑖𝑡𝑖𝑒𝑠  𝑐 > 𝑏

 

Either way, the number of prey that a predator can consume 

is limited or consequently the predator reaches a saturation 

level. for example: 

Small mammals destroy most of gypsy moth pupae in sparse 

populations of gypsy moth. 

However, in High – Density defoliating populations, small 

mammals kill a negligible proportion of pupae (Sharov – 

1996) 

c. Hulling Type – III 

Hulling Type – III, functional response is represented by the 

function below, that is, 

𝑓(𝑚) =
𝑑𝑚𝑥

𝐹+𝑚𝑥     

     (3) 

𝑊ℎ𝑒𝑟𝑒   𝑥 > 1, it is the Encounter Rate between predator 

and prey before predator reaches maximum efficiency and 

also 𝑑 𝑎𝑛𝑑 𝐹 > 0 

According to (Sharov – 1996), Holling III functional response 

occurs in predators which increase their search activity with 

increasing prey density. 

1.2. For example 

Many predators respond to kairomones (Chemical emitted by 

prey) and increase their activity; Polyphagous vertebrate 

(e.g., Birds) can switch to the most abundant prey species by 

learning to recognize itvisuality, Mortality first increases with 

prey increasing density, and then declines. If predator density 

is constant (e.g., Birds, Small mammals) then they can 

regulate prey density only if they have a Holling Type – III 

functional response, because this is the only type of functional 

response for which prey mortality can increase with 

increasing prey density. However, regulating effect of 

predators is limited to the interval of prey density where 

mortality increases. If prey density exceeds the threshold 

value of this interval, then mortality due to predation starts 

declining, and production will cause a Positive – Feed – Back/ 

As a result, the (Decreases or Food Shortage) will stop their 

reproduction. 

1.3. To Find Ratio Dependency – (𝒎 𝒑⁄ )in the Holling 

Type – II - Function 

It is obtained by substituting the Prey – Predator ratio(𝑚 𝑝⁄ ) 

for prey density (𝑚) in the Holling Type – II function is 

𝑓(𝑚 𝑝⁄ ) =
𝑑(𝑚 𝑝⁄ )

𝑛+(𝑚 𝑝⁄ )
=

𝑑𝑚

𝑛𝑝+𝑚
   (4) 

𝑊ℎ𝑒𝑟𝑒, 𝑑 > 0 𝑎𝑛𝑑 𝑚 > 0  

That stand for capture rate and half – saturation constant for 

predator 𝑝 respectively (Xiao and Ruan – 2001). (Bedding 

ton– 1975) and (De Angeles – 1975) et. al. proposed 

independently amore general formof ration – dependent 

function response, that is, 

𝑓(𝑚 𝑝⁄ ) =
𝑎𝑚

1+𝑏𝑚+𝑐(𝑝−1)
    (5) 

𝑊ℎ𝑒𝑟𝑒, 𝑎 > 0, it is the attack rate of the predator, and 

𝑊ℎ𝑒𝑟𝑒, 𝑏 > 0 , it is positive constant that describe the effects 

of capture rate and 𝑐 describes the magnitude of interference 

among predators. Thus, this functional response takes into 

account the delay in time incurred by the predators as a result 

of inter specific competition for the different prey species. For 

Prey – Predator – Dependency, the consumption rate of the 

predator depends on both the prey and predator density.  

For examples of  Prey – Predator – Dependency Functional 

Response are 

{
𝑎.  𝐶𝑟𝑜𝑤𝑙𝑦 − 𝑀𝑎𝑟𝑡𝑖𝑛 𝑀𝑜𝑑𝑒𝑙
𝑏.  𝐻𝑎𝑠𝑠𝑒𝑙 𝑉𝑎𝑟𝑙𝑒𝑦 𝑀𝑜𝑑𝑒𝑙       

  

Both documented in (Skalski and Gillian – 2001) 

For Crowley – Martin Model is given by 

𝑓(𝑚 𝑝⁄ ) =
𝑎𝑚

1+𝑏𝑚+𝑐(𝑝−1)+𝑏𝑐𝑚(𝑝−1)
   

    (6) 

 

1.4. Remark: 

An important distinction between the Bedding ton – 

DeAngelis Model and the Crowly – Martin Model is that the 

effects of predator interference (Competition/Infighting 

among predators) on the feeding rate becomes negligible 

under conditions of high prey density while the latter assumes 

that the interference remains important even at high prey 

density (Skalski and Gillian – 2001). 

This can be seen by letting 𝑚(𝑡) ⟶ ∞ in both models. It is 

noticed that the Bedding ton – DeAngelis Model gives an 

expression 

lim
𝑚⟶∞

𝑓 (𝑚 𝑝⁄ ) =
𝑎

𝑏
    (7) 

Independent of predator interference parameter 𝑐 and while 

the Crowly – Martin Model give an expression  

lim
𝑚⟶∞

𝑓 (𝑚 𝑝⁄ ) =
𝑎

𝑏+𝑏𝑐(𝑝−1)
   (8) 

Dependent on predator interference and density 

According to (Abrams and Matsuda – 1996), generally, Ratio 

– Dependent type of functional response is more appropriate 

in Predator – Prey interactions in which, the predator takes 

too much time in handling the prey, aggression and/or 

competition among predators is time consuming which 

prolongs searching time, the prey adopt an anti – predator 

behavior and try to evade the predator. In the proposed study, 

we intend to use Holling Type – II function response, ratio – 

dependent response and harvesting effort of prey species with 

second prey adopts anti – predator behavior. 

 

1.5. Aim and Achievement 

Mathematical Ecology requires study of populations that 

interact there by affecting each other’s growth rates. So that, 

many scientists have carried out different studies on the 

predator – prey interaction. Our main of this article is to 

understand the dynamics of interaction between one predator 
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and two preys with harvesting of prey species using Holling 

Type – II functional response and ratio dependent response. 

Therefore, in this research, we modify a mathematical model 

which clearly describes the existing reality between two preys 

and one predator system with constant harvesting of prey in 

maintaining both populations in stable ecological system, and 

hence we will raise the following research-oriented questions 

1. Can we modify a mathematical model which efficiently 

describes the dynamics of two preys and one predator 

with constant harvesting effort of prey species? 

2. Are the systems both locally and globally stable? 

3. What are the impacts of constant harvesting effort of prey 

species on the local stability of the predator prey 

dynamics? 

4. Is there any biological hindering factor on the 

coexistence of prey and predator dynamical system with 

constant harvesting effort of prey? 

5. Find out how harvesting hunting of the preys impacts on 

the long term stability of the ecosystem so as to establish 

conditions for optimal harvesting of the prey? 

6. Analyze local and global stability of the predator – prey 

dynamics. 

7. Give biological analysis on the coexistence of two prey 

and predator dynamical system with harvesting of prey. 

 

1.6. Signification of the Research 

We hope that, if the formulated mathematical model clearly 

reflects the effect of constant harvesting of preys on stable co 

– existence of these population. The findings of this research 

will be benefit different bodies differently. Hence, it will  

a. Help policy makers in making decisions to protect 

endemic species in the world. 

b. Initiate other researchers to undertake further extension 

and precise mathematical analysis. 

c. Provide details information how to manage the long term 

stable co – existence of the predator and two prey 

population of the authorized bodies. 

In all situations we are using a system of Ordinary 

Differential Equations. Then we studied the qualitative 

behavior of the formulated mathematical model governing 

the system. Its local and global stability were discussed by 

using Jacobean Matrix and Lapunove Functions respectively. 

The analytical results tested through numerical simulation 

using MATLAB software. 

 

2. LITERATURE REVIEW 

Mathematical Modeling of exploitation of biological 

resources is still a very interesting field of research/ 

Systematic mathematical analysis can often lead to better 

understanding of bio – economic models. In the last few 

decades, interest has growing steadily in the designing and 

studying of mathematical models of population interactions. 

Mathematical modelling and analysis of ecological problems 

was first done by (Volterra – 1927). He had been introduced 

to an ecological problem that in the years after the First World 

War, the population of the predatory fishes caught in Upper 

Adriatic Sea was found to be considerably higher than in the 

years before the war. Whereas the proportion of prey fishes 

was down: In order to come out with an explanation to this 

ecological problem, Volterra formulated and analyzed a 

system of ordinary differential equations which is represented 

as: 

{

𝑑𝑥

𝑑𝑡
= 𝑥(𝑎 − 𝑏𝑦)

𝑑𝑦

𝑑𝑡
= 𝑦(−𝑐 + 𝑑𝑦)

   (2.1.) 

𝑤ℎ𝑒𝑟𝑒 𝑥 𝑎𝑛𝑑 𝑦 , they were the densities of the prey and 

predator fish respectively. Thos system of differential 

equations was also studied independently by (Lotka – 1925) 

in the context of chemical kinetics and is known as the Lotka 

– Volterra Model (LVM). Volterra study showed that the 

steady state for the co – existence of the prey fish and 

predatory fish was periodic and that a pause of fishery world 

indeed led to an increase of the predators and a decrease in 

the prey. Then, many ecological models have been 

formulated and analyzed to study various phenomena. 

(Freedman – 1980) came up with generalized Pre – Predator 

Model represented by the system of equations as shown 

below: 

{

𝑑𝑥

𝑑𝑡
= 𝑥𝑔(𝑥) = 𝑦𝑓(𝑥)

𝑑𝑦

𝑑𝑡
= 𝑦[−𝑐 + 𝑝(𝑥)]

   (2.2.) 

𝑤ℎ𝑒𝑟𝑒 𝑥 𝑎𝑛𝑑 𝑦 , they were the densities of the prey and 

predator respectively, 𝑔(𝑥), it is the grown rate of the prey in 

absence of the predators, 𝑓(𝑥), it is the functional response of 

the predators with respect to prey 𝑥 and 𝑝(𝑥), it is the 

numerical response of the predator. In most cases, 𝑝(𝑥), it is 

a product of a constant and 𝑓(𝑥). The functions 𝑓(𝑥) and 

𝑝(𝑥), they are continuous and differentiable functions. 

2.1. Models for Two Preus and One Predator System with 

Harvesting 

(Kar – 2003) studied a prey – predator system with delay, 

Holling Type – II functional response and harvesting of the 

prey. The study showed that as harvesting effort increased, 

the predator’s population decrease as expected. More 

importantly, if the harvesting effort was above a critical value 

which was determined in the study, the dynamic system 

changed from limit cycle to Globally Asymptotic Stability 

(GAS). This showed that harvesting of the prey alone 

indirectly affected the population density of the predators and 

also played a crucial role in stabilizing the dynamics of the 

prey – predator systems. The delay term was included to 

ensure that only mature preys were harvesting. 

(Chaudhri and Kar – 2004) proposed and analyzed a fishery 

models of tow preys and one predator system in which the 

prey was being harvested and the feeding rate of the predator 

increases linearly with prey density. They derived conditions 

for Global Stability (G. S) of the system, using a Lapunove 

Functions. Using Ponryagins Maximal Principal, they 
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established the conditions for Optimal Harvest. However, the 

prey dependent – Linear Functional Response used in their 

models don’t represent the feeding patterns of most species 

as compared to Holling Type – II response or Ratio – 

Dependent Response. (Greem – 2004) studied a model on two 

preys and one predator system in which competing and 

predation followed the density gradient of the prey. It was 

discovered that when the predator divides its time between 

the two preys depending on their comparative density, the 

predator stabilized the system. Limit cycle and chaotic 

behavior in the system were also investigated. The model did 

not consider competition among prey and prey harvesting. 

(Vlastmil and Eisner – 2006) studied a one consumer and two 

resources population dynamics systems in which the 

resources was spatially distributed between two patches. The 

studied showed that the resources grow exponentially, 

handling times are zero and apparent competition always 

leads to extinction of the weaker resource. However, with 

logistic growth and Holling Type – II functional response 

included in the mode, species permanence was guaranteed. 

This showed the importance of incorporating logistic growth 

in prey – predator models. 

2.2. Models Incorporating Ratio – Dependent Response 

(Dubey and Upadhyay – 2004) studied a model on two 

predators and prey system with ration to be – dependent 

predators’ growth. Their results showed that the role of food 

conversion coefficients of predators in ratio – dependent 

models were crucial in determining the stability behavior of 

planer – equilibrium. They derived sufficient conditions for 

the system to be uniformly persistent. Conditions were 

derived for the co – existence equilibrium to be (GAS). The 

rate food conversion coefficients of predators in stabilizing 

the model are also compared to that of the effect of 

harvesting. The model proposed for this research incorporates 

both the Holling Type – II and Ratio – Dependent responses, 

something none of the models above have done, The 

justification for our model is that it seeks to capture the 

dynamics of predator feeding in two preys. One prey is easy 

to capture and the predator takes less time in searching and 

handling it, this behavior is modeled by the Holling Type – II 

response. The second prey is hard to capture and the predator 

takes much time in searching and handling the prey, this 

behavior is modeled by the Ratio – Dependent Response. 

They preys are harvested and this has an impact on the 

stability of the ecosystem. It is noted, that in the Bedding ton 

– De Angelis Ratio – Dependent Response in equation (1.5) 

that is, 

(𝑚 𝑝⁄ ) =
𝑎𝑚

1+𝑏𝑚+𝑐(𝑝−1)
    (5) 

Parameter𝑐 > 0 describes the magnitude of interference 

among predators. However, the model proposed here has only 

one predator species and as such interference among 

predators is not considered. Therefore, Parameter 𝑐 > 0 it is 

replaced with  𝑑2 > 0 to represent the magnitude of Anti – 

Predators behavior by the hard to capture prey. Also, as in 

(Skalski and Gillian – 2001), we replace (𝑝 − 1) with a 

continuous variable  𝑦(𝑦 = 𝑦(𝑡)), since in our model, 

predator abundance is modeled as continuous variable. In 

conclusion, the literature review focused on various types of 

functional response and mathematical models with emphasis 

on two preys and one predator mathematical models. In this 

article, a mathematical model is formulated and analyzed to 

study the dynamics of one predator and two preys eco – 

system in which prey species are harvested and the first prey 

is easy to capture by the predator, while the alternative prey 

has adopted anti – predator behavior and so it requires a lot of 

scratching and handling time for the predator to capture. 

 

3. MODEL FORMULATION AND ANALYSIS 

Here, we are going to present model assumptions, 

formulation and analysis. Consider a prey – predator model 

in which Fox is predator species while the Antelope and 

Rabbit are the prey species. 

The main feature of the model is that two different functional 

responses of the predator are incorporated in the model to 

represent the difference in the way the predator feeds on each 

of the prey species. The first prey is easy to capture prey and 

the predator’s response to the easy to capture prey is Holling 

Type – II response. The second prey has adopted anti – 

predator behavior and is hard to capture prey and this 

behavior is represented by the Ratio – Dependent response of 

the predator. Constant effort harvesting of the prey is 

incorporated in the model to cater for the effects of human 

reaching on the prey species. Terms representing logistic 

grow of the prey species in absence of the predator are 

included in the model. That is why the model has three non – 

linear autonomous ordinary differential equations describing 

how the population densities of the three species would vary 

with time. 

3.1. Assumptions 

We are going to modify a mathematical model which 

describes the dynamics of the interaction between two prey 

populations and one predator population. So that, we take the 

following assumption to develop our analysis. 

1. The species live in ecosystem where external factors 

such as droughts, fires, epidemics are stable or have 

similar effect on the interacting species. 

2. One prey is easy to capture by the predator, while the 

other prey has adopted anti – predator behavior and so it 

requires a lot of searching and handling time for the 

predator to capture it. 

3. The rate of human poaching of the prey is on average 

constant per unit tome and so it is represented as constant 

harvesting effort of the prey. 

4. The prey population follows the logistic growth model in 

the absence of predator of human poaching. 

5. The rate of increase of the predator depends on the 

amount of biomass it converts as food. 
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Let us take𝑋1(𝑡), 𝑋2(𝑡), denote population densities of two 

prey, and 𝑌(𝑡) denotes population density of the predator at 

the time 𝑡. Then, the mathematical model which describe the 

dynamics between the two preys and the one predator 

population is given by (V. Madhusudan and S. V. Jaya -2007) 

as 

{
 
 

 
 
𝑑𝑋1

𝑑𝑡
= 𝑆1𝑋1 (1 −

𝑋1

𝐾1
) − 𝜔1𝑋1𝑋2 − (

𝑎1𝑋1

1+𝑏1𝑋1
) 𝑌 − 𝐻1𝑋2

𝑑𝑋2

𝑑𝑡
= 𝑆2𝑋2 (1 −

𝑋2

𝐾2
) − 𝜔2𝑋1𝑋2 − (

𝑐𝑋2

1+𝑑1𝑋2+𝑑2𝑌
)𝑌      

𝑑𝑌

𝑑𝑡
= −𝑒𝑌 + 𝜆1 (

𝑎1𝑋1

1+𝑏1𝑋1
)𝑌 + 𝜆2 (

𝑐𝑋2

1+𝑑1𝑋2+𝑑2𝑌
) 𝑌      

  (3.1) 

 

3.2. Parameters 

The following are the parameters used in our model 

1. 𝑆1 𝑎𝑛𝑑 𝑆2 ⟶ They are per capita intrinsic growth rates 

for prey𝑋1 𝑎𝑛𝑑 𝑋2 respectively. 

2. 𝐾1 𝑎𝑛𝑑 𝐾2 ⟶ They are carrying capacities for 

prey𝑋1 𝑎𝑛𝑑 𝑋2 respectively. 

3. 𝜔1 𝑎𝑛𝑑 𝜔2 ⟶ They are coefficients for interspecific 

competition between prey𝑋1 𝑎𝑛𝑑 𝑋2 respectively. 

4. 𝑎1 𝑎𝑛𝑑 𝑐    ⟶ They are capturing rates of predator 𝑌 on 

𝑋1 𝑎𝑛𝑑 𝑋2 respectively. 

5. 𝑏1 𝑐⁄  𝑎𝑛𝑑 𝑑1 𝑐⁄ ⟶ They are the predator’s handling 

time on prey 𝑋1 𝑎𝑛𝑑 𝑋2 respectively. 

6. 𝐻1 𝑎𝑛𝑑  𝐻2           ⟶ They are constant effort harvesting 

rate of prey 𝑋1 𝑎𝑛𝑑 𝑋2 respectively. 

7. 𝑒 ⟶ It is the mortality rate of predator 𝑌. 

8. 𝑑2 ⟶ measures the effect of anti – predator behavior of 

prey𝑋2, and 

9. 𝜆1 𝑎𝑛𝑑 𝜆2 ⟶ They are coefficients which measure the 

predator’s efficiency to convert prey biomass of 

𝑋1 𝑎𝑛𝑑 𝑋2 respectively into fertility (Reproductivity) 

If we harvest the second prey by 𝐻2𝑋2 in the above model 

equation (3.1) is modified as follows: 

{
 
 

 
 

𝑑𝑋1

𝑑𝑡
= 𝑆1𝑋1 (1 −

𝑋1

𝐾1
) − 𝜔1𝑋1𝑋2 − (

𝑎1𝑋1

1+𝑏1𝑋1
)𝑌 − 𝐻1𝑋2

𝑑𝑋2

𝑑𝑡
= 𝑆2𝑋2 (1 −

𝑋2

𝐾2
) − 𝜔2𝑋1𝑋2 − (

𝑐𝑋2

1+𝑑1𝑋2+𝑑2𝑌
)𝑌 − 𝐻2𝑋2

𝑑𝑌

𝑑𝑡
= −𝑒𝑌 + 𝜆1 (

𝑎1𝑋1

1+𝑏1𝑋1
)𝑌 + 𝜆2 (

𝑐𝑋2

1+𝑑1𝑋2+𝑑2𝑌
) 𝑌                

    (3.2) 

𝑤ℎ𝑒𝑟𝑒 𝐻2 It is constant effort harvesting rate of prey 𝑋2 

From our model assumptions and parameters, the equation 

which represents the dynamics of the one predator and two 

prey ecosystems are formulated below: 

Without loss of generality, due to easy computations, non – 

depersonalization of the model represented by equation (3.2) 

is done so as to reduce the number of parameters as follows: 

Let us take, 𝑁1 = 𝑏1𝑋1;  𝑁2 = 𝑑1𝑋2; 𝑍 = 𝑑2𝑌 𝑎𝑛𝑑   𝜏 = 𝑆1𝑡 

{
 
 

 
 

𝑑𝑁1

𝑑𝑡
= 𝑁1 (1 −

𝑁1

𝑏1𝐾1
) −

𝜔1𝑁2

𝑆1𝑑1
− (

𝑎1𝑍

𝑆1𝑑1+(1+𝑁1)
) −

𝐻1

𝑆1
𝑑𝑁2

𝑑𝑡
=

𝑆2

𝑆1
𝑁2 [(1 −

𝑁

𝑑1𝐾2
) −

𝜔2𝑁1

𝑆1𝑏1
− (

𝑐𝑍

𝑑2𝑆1(1+𝑁2+𝑍)
) −

𝐻2

𝑆1
]

𝑑𝑍

𝑑𝑡
=

𝑒

𝑆1
𝑍 [(

𝜆1𝑎1𝑁1

𝑒𝑏1(1+𝑁1)
) + (

𝜆2𝑐𝑁2

𝑒𝑑1(1+𝑁2+𝑍)
) − 1 ]

    (3.3) 

Again, let us take.  

𝛾1 =
1

𝑏1𝐾1
;  𝛾2 =

1

𝑑1𝐾2
;   𝛿1 =

𝜔1

𝑆1𝑑1
; 𝛿2 =

𝜔2

𝑆1𝑏1
;  𝑔1 =

𝑎1

𝑆1𝑑2
 ; 𝑔2 =

𝑐

𝑆1𝑑2
;   

ℎ1 =
𝜆1𝑎1

𝑒𝑏1
; ℎ2 =

𝜆2𝑐

𝑒𝑑1
; 𝛼1 =

𝑆2

𝑆1
;   𝛼2 =

𝑒

𝑆1
;  𝑀 =

𝐻1

𝑆1
; 𝑅 =

𝐻2

𝑆1
;   

And then, the equation (3.3) becomes 

{
 
 

 
 
𝑑𝑁1

𝑑𝜏
= 𝑁1 [1 − 𝛾1𝑁1 − 𝛿1𝑁2 −

𝑍𝑔1

1+𝑁1
] − 𝑀                         

𝑑𝑁2

𝑑𝜏
= 𝑁2 [𝛼1 − 𝛼1𝛾2𝑁2 − 𝛿1𝑁2 −

𝑍𝑔2

!+𝑁2+𝑍
− 𝑅]               

𝑑𝑍

𝑑𝜏
= 𝑍𝛼2 [(

ℎ1𝑁1

(1+𝑁1)
) + (

ℎ2𝑁2

(1+𝑁2+𝑍)
) − 1 ]                           

    (3.4) 

All above parameters are in system 3.4 are positive only. 

Remarks: 

System (3.4) has 12 parameters compare to the system (3.2) 

has 16 parameters. 

 

3.3. Existence of equilibrium points of the system 

Now, we check the conditions of equilibrium points of the system (3.4). We can easily find that the system (3.4) has Seven Possible 

Non – Negative Equilibrium Points. They are 

{
𝐸0(0, 0, 0); 𝐸1(𝑁1

∗, 0, 0); 𝐸2(0, 𝑁2
∗, 0); 𝐸3(𝑁1

∗, 𝑁2
∗, 0)

𝐸4(𝑁1
∗, 0, 𝑍∗); 𝐸5(0, 𝑁2

∗, 𝑍∗); 𝐸6(𝑁1
∗, 𝑁2

∗, 𝑍∗)
}  

Note that, the existence of 𝐸0(0, 0, 0) is trivial. Now, we will show the existence of other equilibrium points one by one. 

1. Existence of 𝑬𝟏(𝑵𝟏
∗ , 𝟎, 𝟎) 𝒘𝒊𝒕𝒉 𝑵𝟏

∗ > 0 

In this case, take, 𝑁2 = 𝑍 = 0, and then in equation (3.4) we have,  

𝑁1 [1 − 𝛾1𝑁1 − 𝛿1𝑁2 −
𝑍𝑔1

1+𝑁1
] ⟹ 𝑁1

∗ =
1−𝑀

𝛾1
⟹ 𝐸1(𝑁1

∗, 0, 0) = 𝐸1 (
1−𝑀

𝛾1
, 0, 0)  

⟹ 𝐸1 Exists, if 𝑀 < 1        (3.5) 

From (3.5) ⟹ ℎ1 < 𝑍1 ⟹ the absence of prey𝑋2 and predator 𝑌, the harvesting rate of prey 𝑋1 must be less than its intrinsic growth 

rate of equilibrium 𝐸1(𝑁1
∗, 0, 0) to exist 

2. Existence of 𝑬𝟐(𝟎, 𝑵𝟐
∗ , 𝟎) 𝒘𝒊𝒕𝒉 𝑵𝟐

∗ > 0 

In this case, take, 𝑁2 = 𝑍 = 0, and then equation (3.4) gives, 

𝑁2[𝛼1 − 𝛼1𝛾2𝑁2 − 𝑅] ⟹ 𝑁2
∗ =

𝛼1−𝑅

𝛼1𝛾2
⟹ 𝐸2(0, 𝑁2

∗0, 0) = 𝐸2 (0,
𝛼1−𝑅

𝛼1𝛾2
, 0), and hence the equilibrium point𝐸2 exists, if 𝑅 <

𝛼1 
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3. Existence of 𝑬𝟑(𝑵𝟏
∗ , 𝑵𝟐

∗ , 𝟎) 𝒘𝒊𝒕𝒉 𝑵𝟏
∗ > 0 𝑎𝑛𝑑 𝑵𝟐

∗ > 0 

In this case, take, 𝑍 = 0, and then in equation (3.4) we have,  

𝑁1[1 − 𝛾1𝑁1 − 𝛿1𝑁2 −𝑀] = 0 𝑎𝑛𝑑 𝑁2[𝛼1 − 𝛼1𝛾2𝑁2 − 𝛿1𝑁2 − 𝑅] = 0  

⟹𝑁1
∗ = [

𝛾2𝛼1−(1−𝑀)+𝛿1(𝑅−𝛼1)

𝛾1𝛾2𝛼1−𝛿1𝛿2
]  𝑎𝑛𝑑 𝑁2

∗ = − [
𝛾1(𝑅−𝛼1)+𝛿2(1−𝑀)

𝛾1𝛾2𝛼1−𝛿1𝛿2
]   (3.6) 

⟹ 𝐸3(𝑁1
∗, 𝑁2

∗, 0) = 𝐸3 ([
𝛾2𝛼1−(1−𝑀)+𝛿1(𝑅−𝛼1)

𝛾1𝛾2𝛼1−𝛿1𝛿2
] , − [

𝛾1(𝑅−𝛼1)+𝛿2(1−𝑀)

𝛾1𝛾2𝛼1−𝛿1𝛿2
] , 0) . And hence the equilibrium point 𝐸3 exists, if  

𝑀 > 1;  𝑅 < 𝛼1;  𝛿2(1 −𝑀) < 𝛾1(𝑅 − 𝛼1);  𝛾1𝛾2𝛼1 < 𝛿1𝛿2   (3.7) 

Note: 

𝐸3(𝑁1
∗, 𝑁2

∗, 0) = 𝐸3 ([
𝛾2𝛼1−(1−𝑀)+𝛿1(𝑅−𝛼1)

𝛾1𝛾2𝛼1−𝛿1𝛿2
] , − [

𝛾1(𝑅−𝛼1)+𝛿2(1−𝑀)

𝛾1𝛾2𝛼1−𝛿1𝛿2
] , 0) it can also exists, if,𝑀 > 1;  𝑅 < 𝛼1;  𝛿2(1 − 𝑀) <

𝛾1(𝑅 − 𝛼1);  𝛾1𝛾2𝛼1 > 𝛿1𝛿2   (3.8) 

Using Condition (3.7)⟹𝜔1𝜔2 <
𝑆1𝑆2

𝐾1𝐾2
 and add 𝐻1 < 𝑆1 𝑎𝑛𝑑 𝐻2 < 𝑆2, we get, in absence of the predator, the vital parameters for 

existence of the two prey species are; precipitate intrinsic growth rates of the prey, constant effort harvesting rate or the prey, 

carrying capacities of the prey and inter specific competition among the prey specie is negligible, then these two prey species will 

co – exist provided the constant effort harvesting rate is less than its precipitate intrinsic growth rate. We also comment that, because 

of the non – existence of inter specific competition among prey𝑋1 𝑎𝑛𝑑 𝑋2, so that, Condition (3.8) is not realistic as Condition (3.7) 

4. Existence of 𝑬𝟒(𝑵𝟏
∗ , 𝟎, 𝒁∗) 𝒘𝒊𝒕𝒉 𝑵𝟏

∗ > 0 𝑎𝑛𝑑 𝒁∗ > 0 

In this case, take, 𝑁2 = 0, and then equation (3.4) gives, 

𝑁1[1 − 𝛾1𝑁1 − 𝑍𝑔1 −𝑀] = 0       (3.9) 

𝑍 (
ℎ1𝑁1

1+𝑁1
− 1)         (3.10) 

Using (3.9) and (3.10); for 𝑍 ≠ 0 𝑎𝑛𝑑 𝑁1 ≠ 0,we get 

𝑁1
∗ =

1

(ℎ1−1)
 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 ℎ1 > 1       (3.11) and 

𝑍∗ =
1

(ℎ1−1)𝑔1
[(ℎ1 − 1)(1 − 𝑀) − 𝛾1]      (3.12) 

⟹ 𝐸4(𝑁1
∗, 0, 𝑍∗) = 𝐸4 (

1

(ℎ1−1)
, 0,

1

(ℎ1−1)𝑔1
[(ℎ1 − 1)(1 − 𝑀) − 𝛾1]) , exists, if 

𝑀 < 1;  ℎ1 > 1         (3.13) 

(ℎ1 − 1)(1 − 𝑀) > 𝛾1        (3.14) 

Condition (3.13)⟹ 𝜆1 >
𝑒𝑏1

𝑎1
, that is, the 𝜆1 proportion of biomass of prey 𝑋1 converted into food by the predator 𝑌 must be greater 

than the product of the predator’s natural mortality rate,  𝑒 and the time, it takes to handle the prey 
𝑏1

𝑎1
 

5. Existence of 𝑬𝟓(𝟎, 𝑵𝟐
∗ , 𝒁∗) 𝒘𝒊𝒕𝒉 𝑵𝟐

∗ > 0 𝑎𝑛𝑑 𝒁∗ > 0 

In this case, take, 𝑁1 = 0, and then equation (3.4) gives, 

𝑁2 [𝛼1 − 𝛼1𝛾2𝑁2 −
𝑍𝑔2

1+𝑍+𝑁2
− 𝑅] = 0      (3.15) 

⟹ 𝑍(
ℎ2𝑁2

1+𝑍+𝑁2
− 1) = 0        (3.16) 

Equation (3.16) gives, for 𝑍 ≠ 0 𝑎𝑛𝑑 𝑁2 ≠ 0, we get 

𝑍 = ℎ2𝑁2 − 𝑁2 − 1        (3.17) 

Substituting (3.17) in (3.15), we get 

ℎ2𝛾2𝑁2
2 + (𝑔2ℎ2 + 𝑅ℎ2 − ℎ2 − 𝑔2)𝑁2 − 𝑔2 = 0    (3.18) 

Equation (3.18), is the quadratic equation in terms of 𝑁2, we have the form as 

𝐴𝑁2
2 + 𝐵𝑁2 + 𝐶 = 0, 𝑤ℎ𝑒𝑟𝑒 𝐴 = ℎ2𝛾2; 𝐵 = (𝑔2ℎ2 + 𝑅ℎ2 − ℎ2 − 𝑔2) 𝑎𝑛𝑑 𝐶 = 𝑔2  

⟹𝑁2
∗ =

−𝐵±√𝐵2−4𝐴𝐶

2𝐴
        (3.19) 

Since 𝐴, 𝐵, 𝑎𝑛𝑑 𝐶 > 0 𝑡ℎ𝑒𝑛 𝑁2
∗ > 0 ⟹From (3.17), 𝑍∗ = (ℎ2 − 1)𝑁2 − 1 > 0    

𝑁2
∗ =

1

(ℎ2−1)
 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 ℎ2 > 1       (3.20) 

The condition ℎ2 > 1 ⟹ 𝜆2 >
𝑒𝑑1

𝑐
, that is, 𝜆2proportion of biomass of prey 𝑋2 converted into fertility (ability to reproduce) by the 

predator 𝑌 must be greater than the product of the predator’s natural mortality rate,  𝑒 and the time, it takes to handle the prey 
𝑑1

𝑐
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6. Co – Existence Equilibrium Point 𝑬𝟔(𝑵𝟏
∗ , 𝑵𝟐

∗ , 𝒁∗) 

Due to [Dubey and Upadhyay – 2000], equate equation (3.4) to zero and then we find two functionals, 𝑓(𝑁1, 𝑁2) 𝑎𝑛𝑑 𝑔(𝑁1, 𝑁2), 

which intersect at the equilibrium point 𝑁1, 𝑁2. Now, equating equation (3.4) to zero gives us 

1 − 𝛾1𝑁1 − 𝛿1𝑁2 −
𝑔1𝑍

(1+𝑁1)
−𝑀 = 0      (3.21) 

𝛼1 − 𝛼1𝛾2𝑁2 − 𝛿2𝑁2 −
𝑔2𝑍

(1+𝑁2+𝑍)
− 𝑅 = 0     (3.22) 

−1 +
ℎ1𝑁1

(1+𝑁1)
+

ℎ2𝑁2

(1+𝑁2+𝑍)
= 0       (3.23) 

From equation (3.21), we get 

𝑍 =
(1+𝑁1)

𝑔1
(1 − 𝑀 − 𝛾1𝑁1 − 𝛿1𝑁2)      (3.24) 

From equation (3.22), we get 

𝑍 =
ℎ2𝑁2(1+𝑁1)(1−𝛾2𝑁2−𝛿2𝑁1−𝑅)

𝑔2−(1−𝛼1𝛾2𝑁2−𝛿2𝑁2)
       (3.25) 

Again equations (3.22) and (3.23) gives 

𝑍 =
ℎ2𝑁2(1+𝑁1)(1−𝛾2𝑁2−𝛿2𝑁1−𝑅)

𝑔2(1+𝑁1−𝑁1ℎ1)
       (3.26) 

Equations (3.25) and (3.26) give 

𝑓(𝑁1, 𝑁2) =
ℎ2𝑁2(1+𝑁1)

𝑔2(1+𝑁1−𝑁1ℎ1)
−

(1+𝑁2)

𝑔2−(1−𝛼1𝛾2𝑁2−𝛿2𝑁2)
= 0    (3.27) 

Equations (3.24) and (3.26) give 

𝑔(𝑁1, 𝑁2) =
(1−𝛾1𝑁1−𝛿1𝑁2−𝑀)

𝑔1
−

ℎ2𝑁2(1−𝛼1𝛾2𝑁2−𝛿2𝑁2−𝑅)

𝑔2(1+𝑁1−𝑁1ℎ1)
= 0   (3.28) 

Note that, equations (3.27) and (3.28) are two functions of𝑁1 𝑎𝑛𝑑 𝑁2. To prove the existence of 𝐸6(𝑁1
∗, 𝑁2

∗, 𝑍∗) under conditions 

those 𝑓(𝑁1, 𝑁2) 𝑎𝑛𝑑 𝑔(𝑁1, 𝑁2) meet in the interior of the positive(𝑁1, 𝑁2) −plane, at a point (𝑁1
∗, 𝑁2

∗) they can be easily found. 

Knowing (𝑁1
∗, 𝑁2

∗), 𝑍∗ they can be obtained from equation (3.25). From equation (3.27)  as 𝑁1 ⟶ 0 𝑎𝑛𝑑 𝑁2 ⟶𝑁2𝑓, that 𝑁2𝑓 is 

𝑁2𝑓 =
−𝐷2+√𝐷2

2−4𝐷1𝐷3

2𝐷1
        (3.29) 

𝑊ℎ𝑒𝑟𝑒  𝐷1 = ℎ2𝛾2;   𝐷2 = (𝑔2𝐷1 − 𝑔2 − ℎ2);   𝑎𝑛𝑑  𝐷3 = −𝑔2  

Clearly, 𝑁2𝑓 is positive and real since𝐷3 < 0. Again, note that 𝑁2𝑓  is same as 𝑁2
∗ of 𝐸5(0, 𝑁2

∗, 𝑍∗). From equation (3.28), as 

𝑁1 ⟶ 0 𝑎𝑛𝑑 𝑁2 ⟶𝑁2𝑓, that 𝑁2𝑓 is given by 

𝑁2𝑔 =
𝐸2+√𝐸2

2−4𝐸1𝐸3

2𝐸1
        (3.30) 

𝑊ℎ𝑒𝑟𝑒  𝐸1 = 𝑔1ℎ2𝛾2;   𝐸2 = −(𝑔2𝛿1 + 𝑔1ℎ2 + 𝑔1ℎ2𝑅);   𝑎𝑛𝑑  𝐸3 =  𝑔2(1 −𝑀)  

Clearly, 𝑁2𝑔 is positive and real if 𝑀 > 1. So that we get the result as 𝑁2𝑓𝑎𝑛𝑑 𝑁2 are points at which the functions 

𝑓(𝑁1, 𝑁2) 𝑎𝑛𝑑 𝑔(𝑁1, 𝑁2) would cut the 𝑁2 −axis in the (𝑁1, 𝑁2) −plane respectively.From (3.25), 
𝑑𝑁2

𝑑𝑁1
= −(

𝜕𝑓

𝜕𝑁1

𝜕𝑓

𝜕𝑁2
⁄ ) 

𝜕𝑓

𝜕𝑁1
=

ℎ1ℎ2𝑁2

𝑔2(1+𝑁1−𝑁1ℎ1)
2 +

𝛿2(1+𝑁1)

[𝑔2−(1−𝛾2𝑁2−𝛿2𝑁1)
2]

; 
𝜕𝑓

𝜕𝑁2
=

ℎ2(1+𝑁1)

𝑔2(1+𝑁1−𝑁1ℎ1)
+

(𝑔2−𝛾2)(𝛿2𝑁1−1)

[𝑔2−(1−𝛾2𝑁2−𝛿2𝑁1)
2]

 

Note:
𝑑𝑁2

𝑑𝑁1
> 0, 𝑖𝑓 

𝜕𝑓

𝜕𝑁1
> 0 𝑎𝑛𝑑 

𝜕𝑓

𝜕𝑁1
< 0, it requires ℎ1 > 1;𝑔2 > 𝛾2;𝑁1 > max {

1

𝛿2
,

1

ℎ1−1
},  

𝑤ℎ𝑒𝑟𝑒 ,
𝜕𝑔

𝜕𝑁1
= {[

𝛾1

𝑔1
] + (

ℎ2𝑁2

𝑔2
) [

(1−𝛾2𝑁2)(ℎ1−1)−𝛿2

(1+𝑁1−𝑁1ℎ1)
2 ]};

𝜕𝑔

𝜕𝑁2
= [

𝛿1

𝑔1
+

ℎ2(1−𝛿2𝑁1−2𝛾2𝑁2)

𝑔2(1+𝑁1−𝑁1ℎ1)
2 ] 

Note: 
𝑑𝑁2

𝑑𝑁1
< 0, 𝑖𝑓 

𝜕𝑔

𝜕𝑁1
< 0 𝑎𝑛𝑑 

𝜕𝑔

𝜕𝑁1
< 0, that is, it requires ℎ1 > 1; 

𝑁1 > max {
1

𝛿2
,

1

(ℎ1−1)
}  𝑎𝑛𝑑 0 < 𝑁2 <

1

𝛾2
[1 −

𝛿2

(ℎ1−1)
] , since for 𝑓(𝑁1, 𝑁2) 𝑎𝑛𝑑 𝑔(𝑁1, 𝑁2) will meet if 𝑁2𝑓 < 𝑁2𝑔 and therefore, 

“State the existence of the positive equilibrium point 

𝐸6(𝑁1
∗, 𝑁2

∗, 𝑍∗) , using the theorem as stated as 

 

Theorem – 3.3.1: 

“The positive equilibrium point 𝐸6(𝑁1
∗, 𝑁2

∗, 𝑍∗) will exist if, forℎ1 > 1and then  

𝑔2 > 𝛾2; 𝑁1 > max {
1

𝛿2
,

1

(ℎ1−1)
} ;  0 < 𝑁2 <

1

𝛾2
[1 −

𝛿2

(ℎ1−1)
]  𝑎𝑛𝑑  𝑁2𝑓 < 𝑁2𝑔  (3.31) 

𝑤ℎ𝑒𝑟𝑒𝑁2𝑓 , 𝑁2𝑔, they are defined in equations (3.29) and (3.30) respectively.” 
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In terms of original parameters, ℎ1 > 1 ⟹ 𝛾1 >
𝑒𝑏1

𝑎1
, 𝑖. 𝑒. 𝛾1 the proportion of biomass of prey𝑋1 converted into food by predator 

 𝑌 must greater than the product of the predator’s natural mortality rate  𝑒 and the time it takes to handle the prey 
𝑏1

𝑎1
, and for the 

condition 𝑔2 > 𝛾2 gives 𝑐 >
𝑆2𝑑2

𝐾2𝑑1
 

That is, the rate at which the predator capture prey 𝑋2 should be greater than the product of the intrinsic growth rate of 𝑋2  and the 

effect the anti – predator of prey𝑋2 

 

3.4. Analyzing – Local Asymptotic – Stability of the Equilibrium Points (LASEPs) 

(LASEPs), which is studied by computing the Jacobian Matrix (JM) and find the eigenvalues evaluated at each six equilibrium 

points. For stability of the equilibrium points, the real part of the eigenvalues o the (JM) must be negative 

From equation (3.4) the (JM) of the system is given by 

𝐽(𝐸𝑖) =  

[
 
 
 
 
𝜕𝑓1

𝜕𝑁1

𝜕𝑓1

𝜕𝑁2

𝜕𝑓1

𝜕𝑍

𝜕𝑓2

𝜕𝑁1

𝜕𝑓2

𝜕𝑁2

𝜕𝑓2

𝜕𝑍

𝜕𝑓3

𝜕𝑁1

𝜕𝑓3

𝜕𝑁2

𝜕𝑓3

𝜕𝑍 ]
 
 
 
 

it gives 𝐽(𝐸𝑖) =

[
 
 
 
 𝑃∗∗ −𝛿1𝑁1 −

𝑔1𝑁1

(1+𝑁2)

−𝛿2𝑁2 𝑄∗∗  −
𝑔2𝑁2(1+𝑁2)

(1+𝑁2+𝑍)

ℎ1𝛼2𝑍

(1+𝑁2)
2 −𝑀

ℎ2𝛼2𝑍(1+𝑍)

(1+𝑁2+𝑍)
2 𝑂∗∗ ]

 
 
 
 

 (3.32) 

𝑊ℎ𝑒𝑟𝑒 𝑃∗∗ = 1 − 2𝛾1𝑁1 − 𝛿2𝑁2 −
𝑔1𝑍

(1+𝑁1)
2 −𝑀; 𝑄

∗∗ = 𝛼1 − 2𝛾2𝛼1𝑁2 − 𝛿2𝑁1 −
𝑔2𝑍(1+𝑍)

(1+𝑁2+𝑍)
2 − 𝑅 And  

𝑂∗∗  − 𝛼2 +
𝑏1𝛼2𝑁1

1+𝑁1
+

ℎ2𝛼2𝑁2(1+𝑁2)

(1+𝑁2+𝑍)
2 , now we start to analyze (LASEPs)for each: 

1. 𝐸0(0, 0, 0); By using  

 

Lemma – 1: “The boundary equilibrium point𝐸0 of the system (3.4) is stable fixed point when 𝑀 > 1 𝑎𝑛𝑑 𝑅 > 𝛼1, otherwise 

unstable fixed point” 

Proof: 

By linearizing system (3.4) at 𝐸0 we obtain (JM) 

𝐽(𝐸0) =  [
1 − 𝑀 0 0
0 𝛼1 − 𝑅 0
0 0 𝛼2

]       (3.33) 

The eigenvalues of 𝐽(𝐸0) are 1 − 𝑀; 𝛼1 − 𝑅 𝑎𝑛𝑑 −𝛼2, if this condition hold when  

𝑀 > 1 𝑎𝑛𝑑 𝑅 > 𝛼1        (3.34) 

Since all eigenvalues of 𝐽(𝐸0) are negatives so that, 𝐸0 is stable. Also, the equilibrium point with 𝑀 < 1 𝑎𝑛𝑑 𝑅 < 𝛼1 is always 

positive, and so that 𝐸0 is unstable fixed point. 

2. 𝐸1(𝑁1
∗, 0, 0) = (

1−𝑀

𝛾1
, 0, 0); By using 

 

Lemma – 2: “The boundary equilibrium point𝐸1 of the system (3.4) is stable fixed point when 𝑀 < 1 𝑎𝑛𝑑 𝑅 > 𝛼1;  𝛾1 <

𝛿2(1 − 𝑀) 𝑎𝑛𝑑  0 < ℎ1 < 1, otherwise unstable fixed point” 

Proof: 

By linearizing system (3.4) at 𝐸1 we obtain (JM) 

𝐽(𝐸1) =  

[
 
 
 
 1 − 𝑀

𝛿1(1−𝑀)

𝛾1

𝑔1(1−𝑀)

𝛾1−(1−𝑀)

0 [𝛼1 +
𝛿2(1−𝑀)

𝛾1
] − 𝑅 0

0 0 𝛼2 [
(1−𝑀)(1−ℎ1)−𝛾1

𝛾1−(1−𝑀)
]]
 
 
 
 

   (3.35) 

The eigenvalues of 𝐽(𝐸1) are (1 − 𝑀); [𝛼1 +
𝛿2(1−𝑀)

𝛾1
]  𝑎𝑛𝑑 𝛼2 [

(1−𝑀)(1−ℎ1)−𝛾1

𝛾1−(1−𝑀)
], the eigenvalues of these three are negatives, for𝑀 <

1 ;  𝑅 > 𝛼1;  𝛾1 < 𝛿2(1 − 𝑀) 𝑎𝑛𝑑 0 < ℎ1 < 1. (3.36) 

⟹The equilibrium point𝐸1(𝑁1
∗, 0, 0) is locally asymptotically stable and for𝑀 > 1; 𝑅 > 𝛼1 unstable. And also, if 𝑀 < 1⟹

𝐻1 < 𝑆1;  𝑅 > 𝛼1 ⟹𝐻2 < 𝑆2 𝑎𝑚𝑑 ℎ1 < 1 ⟹ 𝜆1 < 𝑐 (
𝑏1

𝑎1
) 

⟹For local asymptotically stability of 𝐸1(𝑁1
∗, 0, 0), 𝐻1, the harvesting rate of prey  𝑋1,must be less than𝑆1which is the intrinsic 

growth rate of prey 𝑋1 𝑎𝑛𝑑 𝐻2 , the harvesting rate of prey𝑋2, must be greater than 𝑆2, which is the intrinsic growth rate of prey 

𝑋2and also, 𝜆1, which measures the efficiency of the predator to convert the biomass of prey𝑋1, into fertility or reproductivity must 

be less than the predator’s natural mortality rate  𝑒 and the time, it takes to handle prey 𝑋1, (
𝑏1

𝑎1
), respectively. 
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3. 𝐸2(0, 𝑁2
∗, 0) = (0,

𝛼1−𝑅

𝛼1𝛾2
, 0); By using  

 

Lemma – 3: “The boundary equilibrium point𝐸2 of the system (3.4) is locally asymptotically stable fixed point when 𝑀 > 1 ; 𝛾2 <

 𝑅 > 𝛼1;  𝛾2 < 𝛿1(𝛼1 − 𝑅); 𝑅 < 𝛼1 𝑎𝑛𝑑  0 < ℎ2 < 1, otherwise unstable” 

Proof: 

By linearizing system (3.4) at 𝐸2 we obtain (JM) 

𝐽(𝐸2) =  

[
 
 
 
 [(1 − 𝑀) +

𝛿1(𝛼1−𝑅)

𝛾2
] 0 0

𝛿1(𝛼1−𝑅)

𝛼1𝛾2
(𝛼1 − 𝑅)

𝑔2(𝛼1−𝑅)

𝛾2−(𝛼1−𝑅)

0 0 [
𝑒(𝛼1−𝑅)(1−ℎ2)−𝛾1

𝛾2−(𝛼1−𝑅)
]]
 
 
 
 

   (3.37) 

The eigenvalues of 𝐽(𝐸2) are [(1 − 𝑀) +
𝛿1(𝛼1−𝑅)

𝛾2
] ;  (𝛼1 − 𝑅) 𝑎𝑛𝑑 [

𝑒(𝛼1−𝑅)(1−ℎ2)−𝛾1

𝛾2−(𝛼1−𝑅)
], the eigenvalues of these three are negatives, 

for 

 𝑀 < 1 ;  𝑅 < 𝛼1;  𝛾2 < 𝛿1(𝛼1 − 𝑅) 𝑎𝑛𝑑 0 < ℎ1 < 1.     (3.38) 

⟹The equilibrium point 𝐸2(0, 𝑁2
∗, 0) is locally asymptotically stable and for𝑀 > 1; 𝑅 > 𝛼1 unstable. And also, if 𝑀 < 1⟹

𝐻1 < 𝑆1; that is, the constant effort harvesting rate of prey 𝑋1 must be greater than its precipitate intrinsic grown rate and𝑅 < 𝛼1 ⟹

𝐻2 < 𝑆2;that is, the constant effort harvesting rate of prey 𝑋2 must be less than its percapita intrinsic grown of prey 𝑋2 and using 

(3.38) 

⟹ 𝜆2 <
𝑒𝑑1

𝑐
, also, 𝜆2 measures the efficiency of the predator to convert to the biomass of prey 𝑋2 into fertility or reproductively 

must be less than the predator’s natural mortality rate 𝑒and the time, it takes to handle prey 𝑋2, (
𝑑1

𝑐
), for the local asymptotic stability 

of 𝐸2 (0, 𝑁2
∗, 0)  

3. 𝐸3 (𝑁1
∗, 𝑁2

∗, 0) = 𝐸3 (
(𝛾2−𝛼1[(1−𝑚)+𝛿1](𝑅−𝛼1))

𝛾1𝛾2𝛼1−𝛿1𝛿2
,

[𝛾1(𝑅−𝛼1)−𝛿1(1−𝑀)]

𝛾1𝛾2𝛼1−𝛿1𝛿2
, 0)  

The (JM→ 𝐽𝑎𝑐𝑜𝑏𝑒𝑎𝑛 𝑚𝑎𝑡𝑟𝑖𝑥) evaluated at 𝐸3 𝑔𝑖𝑣𝑒𝑠 𝐽(𝐸3) = [
𝐴∗ 𝐵∗ 𝐶∗

𝐷∗ 𝐸∗ 𝐹∗

0 0 𝐺∗
] 𝑤ℎ𝑒𝑟e 

 

𝐴∗ = −1 − 2𝛾1𝑁1
∗ − 𝛿1𝑁2

∗ −𝑀;𝐵∗ = −𝛿1𝑁2
∗; 𝐶∗ = 𝑔1𝑁1𝑓1 +𝑁1

∗;  𝐷∗ = −𝛿2𝑁2
∗;   

𝐸∗ = 𝛼1 − 2𝛾2𝛼1𝑁2
∗ − 𝛿2𝑁2

∗;  𝐹∗ =
𝑔2𝑁2

∗

1⁄ + 𝑁2
∗; 𝐺∗ =

ℎ2𝛼2𝑁1
∗

!+𝑁1
∗ +

ℎ2𝛼2𝑁1
∗

!+𝑁2
∗   

The eigenvalues of 𝐽(𝐸3) = [
𝐴∗ − 𝜆 𝐵∗ 𝐶∗

𝐷∗ 𝐸∗ − 𝜆 𝐹∗

0 0 𝐺∗ − 𝜆
] = 0    (3.39) 

⟹(𝐴∗ − 𝜆(𝐸∗ − 𝜆))(𝐺∗ − 𝜆) − 𝐷∗𝐵∗ = 0 

⟹𝜆3 − 𝜆2(𝐴∗ + 𝐸∗ + 𝐺∗) + (𝐴∗𝐺∗ + 𝐸∗𝐺∗ + 𝐴∗𝐸∗ − 𝐷∗𝐵∗)𝜆 + 𝐺∗𝐷∗𝐵∗ − 𝐺∗𝐴∗𝐸∗ = 0 

⟹𝜆3 + 𝑎1𝜆
2 + 𝑎2 𝜆 + 𝑎3 = 0 

By Routh – Hurwitz criteria (Murray – 1989), 𝜆 < 0 if𝑎1, 𝑎2 > 0. 𝑎1𝑎2 − 𝑎3 > 0  (3.40) 

Now, we discussed about each of these conditions as following manner: 

For  𝑎1 = 0 ⟹ (𝐴∗ + 𝐸∗ + 𝐺∗) > 0  𝑜𝑟  (𝐴∗ + 𝐸∗ + 𝐺∗) < 0 

Now, we discussed about each of these conditions as following manner 

 

Type – 1: (𝑭𝒐𝒓 𝑮∗ < 0) 

⟹−α2 +
ℎ2𝛼2𝑁1

∗

!+𝑁1
∗ +

ℎ2𝛼2𝑁1
∗

!+𝑁2
∗ < 0, 𝑤ℎ𝑒𝑟𝑒 𝑁1

∗ =
(𝛾2−𝛼1[(1−𝑚)+𝛿1](𝑅−𝛼1))

𝛾1𝛾2𝛼1−𝛿1𝛿2
 𝑎𝑛𝑑 𝑁2

∗ =
[𝛾1(𝑅−𝛼1)−𝛿1(1−𝑀)]

𝛾1𝛾2𝛼1−𝛿1𝛿2
, after simplifying we get, 

𝐺∗ = 𝑁1
∗𝑁2

∗(ℎ1 + ℎ2 − 1) + 𝑁1
∗(ℎ1 − 1) + 𝑁1

∗(ℎ2 − 1) − 1 < 0, it will hold when 

{
𝑀 < 0; 0 < 𝑅 < 𝛼1; 𝛾2(1 −𝑀) < 𝛿1(𝛼1 − 𝑅); 𝛾1(𝛼1 − 𝑅) < 𝛿2(𝛼1 −𝑀);

𝑎𝑛𝑑  𝛾1𝛾2𝛼1 < 𝛿1𝛿2;  ℎ1 < 1; ℎ2 < 1𝑎𝑛𝑑 ℎ1+ℎ2 < 1
}   (3.41) 

In terms of original parameters, ℎ1+ℎ2 < 1 gives (
𝜆1𝑎1

𝑒𝑏1
) + (

𝜆2𝑐

𝑒𝑑1
) < 1 

⟹The predator’s efficiency in converting the biomass of both prey into fertility or reproductively must be less than the predator’s 

mortality rate and the time it takes to handle both preys. 

  

Type – 2: (𝑭𝒐𝒓 𝑨∗ < 0) 

⟹1− 2𝛾1𝑁1
∗ − 𝛿1𝑁2

∗ −𝑀 < 0 substituting 𝑁1
∗  𝑎𝑛𝑑 𝑁2

∗ in this inequality, it gives 
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𝐴∗ = 1 − 2𝛾1 [
(𝛾2−𝛼1[(1−𝑚)+𝛿1](𝑅−𝛼1))

𝛾1𝛾2𝛼1−𝛿1𝛿2
] − 𝛿1 [

[𝛾1(𝑅−𝛼1)−𝛿1(1−𝑀)]

𝛾1𝛾2𝛼1−𝛿1𝛿2
] − 𝑀 < 0  

⟹𝐴∗ < 0, if 𝑅 < 𝛼1; 𝑀 < 1; 𝛾1𝛿1(𝛼1 − 𝑅) < 𝛾1𝛾2(1 − 𝑀) 𝑎𝑛𝑑 𝛾1𝛾2𝛼1 > 𝛿1𝛿2 

 

Type – 3: (𝑭𝒐𝒓 𝑬∗ < 0) 

⟹𝛼1 − 2𝛾2𝛼1𝑁2
∗ − 𝛿2𝑁1

∗ − 𝑅 < 0, substituting 𝑁1
∗  𝑎𝑛𝑑 𝑁2

∗ in this inequality, it gives 

𝑬∗ = 𝛼1 − 2𝛾2𝛼1 [
[𝛾1(𝑅−𝛼1)−𝛿1(1−𝑀)]

𝛾1𝛾2𝛼1−𝛿1𝛿2
] − 𝛿2 [

(𝛾2−𝛼1[(1−𝑚)+𝛿1](𝑅−𝛼1))

𝛾1𝛾2𝛼1−𝛿1𝛿2
] − 𝑅 < 0  

⟹𝑬∗ = [
[𝛾2𝛿2(1−𝑀)−𝛾1𝛾2(𝑅−𝛼1)]

𝛾1𝛾2𝛼1−𝛿1𝛿2
] < 0 

⟹𝐸∗ < 0, if 𝑅 < 𝛼1;𝑀 < 1; 𝛾2𝛿2(1 − 𝑀) < 𝛾1𝛾2(𝑅 − 𝛼1) 𝑎𝑛𝑑 𝛾1𝛾2𝛼1 > 𝛿1𝛿2 holds 

 

Type – 4: (𝑭𝒐𝒓  𝒂𝟑 > 0) 

𝐺∗(𝐷∗𝐵∗ − 𝐴∗𝐸∗) > 0, it is satisfied for Type – I 

⟹(𝐷∗𝐵∗ − 𝐴∗𝐸∗) < 0     (3.42) 

(𝐷∗𝐵∗ − 𝐴∗𝐸∗) = 𝛼1[𝑁1
∗𝜇1 + 𝑁2

∗𝜇2 + (𝑅 − 𝑁1
∗𝛼1 +𝑀) − 4𝛾1𝛾2𝑁1

∗𝑁2
∗ ]  𝑤ℎ𝑒𝑟𝑒   

𝜇1 = 𝛿2 + 2𝛾1 − 2𝛾1𝑅 −𝑀𝛿2 − 2𝛾1𝛿2𝑁1
∗ 𝑎𝑛𝑑 𝜇2 = 𝛿1 + 2𝛾2 − 𝛿1𝑅 −𝑀𝛾2 − 2𝛾1𝛿2𝑁2

∗   

For (𝐷∗𝐵∗ − 𝐴∗𝐸∗) < 0, if 𝜇1, 𝜇2 < 0 𝑎𝑛𝑑 𝑀 + 𝑅 < 𝛼1 and substitute for 

𝑁1
∗ =

(𝛾2−𝛼1[(1−𝑚)+𝛿1](𝑅−𝛼1))

𝛾1𝛾2𝛼1−𝛿1𝛿2
  In  𝜇1 gives 

𝜇1 = 𝛿2 + 2𝛾1 − 2𝛾1𝑅 −𝑀𝛿2 − 2𝛾1𝛿2 [
𝛾2−𝛼1[(1−𝑚)+𝛿1](𝑅−𝛼1)

𝛾1𝛾2𝛼1−𝛿1𝛿2
] After simplification we get 

𝜇1 =
[2𝛾1

2𝛼1𝛾2(𝑅−𝛼1)−(𝛾1𝛾2+𝛿1𝛿2)𝛿1(1−𝑀)]

𝛾1𝛾2𝛼1−𝛿1𝛿2
  

⟹ 𝜇1 = 0 ; for 𝑀 < 1; 𝑅 < 𝛼1;  2𝛾1
2𝛼1𝛾2(𝑅 − 𝛼1) > (𝛾1𝛾2 + 𝛿1𝛿2)𝛿1(1 −𝑀) 𝑎𝑛𝑑 𝛾1𝛾2𝛼1 < 𝛿1𝛿2 

⟹ 
2𝛾1

2

𝛾1𝛾2+𝛿1𝛿2
<

𝛿2(1−𝑀)

𝛾2(𝑅−𝛼1)
     (3.43) 

Similarly, substituting for 𝑁2
∗ = 

[𝛾1(𝑅−𝛼1)−𝛿1(1−𝑀)]

𝛾1𝛾2𝛼1−𝛿1𝛿2
; in  𝜇2 gives 

𝜇2 = 2𝛾2 + 𝛿1 − 𝛿1𝑅 − 2𝑀𝛾2 −𝑀𝛿2 − 2𝛾2𝛿1 [
𝛾1(𝑅−𝛼1)+𝛿2(1−𝑀)

𝛾1𝛾2𝛼1−𝛿1𝛿2
] After simplification we get 

 

𝜇2 =
[2𝛾1

2𝛾1𝛼1𝛾2(1−𝑀)−(𝛾1𝛾2+𝛿1𝛿2)𝛿1(𝑅−𝛼1)]

𝛾1𝛾2𝛼1−𝛿1𝛿2
, and then 𝜇2 < 0 𝑖𝑓 𝑀 < 1; 𝑅 < 𝛼1 𝑎𝑛𝑑 𝛾1𝛾2𝛼1 < 𝛿1𝛿2 

⟹
2𝛾1

2

𝛾1𝛾2+𝛿1𝛿2
>

𝛿1(𝑅−𝛼1)

𝛾1(1−𝑀)
     (3.44) 

 

⟹(𝐷∗𝐵∗ − 𝐴∗𝐸∗) < 0 and if 

𝑀 < 1; 𝑅 < 𝛼1; 𝛾2(𝑅 − 𝛼1) > 𝛿2(1 − 𝑀); 𝛾1(1 − 𝑀) > 𝛿1(𝑅 − 𝛼1)    
2𝛾1

2

𝛾1𝛾2+𝛿1𝛿2
= max {

𝛿1(𝑅−𝛼1)

𝛾1(1−𝑀)
,
𝛿2(𝑅−𝛼1)

𝛾2(1−𝑀)
}      (3.45) 

 

4. 𝑬𝟒( 𝑵𝟏
∗ ,  𝟎, 𝒁∗) = (

𝟏

𝒉𝟏−𝟏
, 𝟎,

𝒉𝟏

(𝒉𝟏−𝟏)
𝟐𝒈𝟏

[(𝒉𝟏 − 𝟏)(𝟏 −𝑴) − 𝜸𝟏]) 

 

Lemma – 4 

The boundary condition of equilibrium point 𝐸4 of the system (3.4) is locally asymptotically stable and it satisfies the 

conditions 𝑀 < {1 𝑎𝑛𝑑 ℎ1} 

Proof 

The Jacobean Matrix evaluate at 𝐸4 and it gives 

𝐽(𝐸4) =

[
 
 
 
 𝐴2

∗ − 𝛿1𝑁1
∗ − 

𝑔1𝑁1
∗

1+𝑁1
∗

0 𝐵2
∗ 0

ℎ1𝛼2𝑍
∗

(1+𝑁1
∗)
2

ℎ1𝛼2𝑍
∗

(1+𝑍∗)2
0

]
 
 
 
 

      (3.46) 

 

𝑤ℎ𝑒𝑟𝑒 𝐴2
∗ = 1 − 2𝛾1𝑁1

∗ −
𝑔1𝑍

∗

(1+𝑁1
∗)
2 −𝑀; 𝐵2

∗ = 𝛼1 − 𝛼1𝛿2𝑁1
∗ −

𝑔1𝑍
∗

(1+𝑍∗)2
− 𝑅  

The eigenvalues of 𝐽(𝐸4) have negative real parts 
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If  𝐴2
∗ , 𝐵2

∗ < 0 𝑎𝑛𝑑 𝑖𝑓𝐴2
∗ < 0 ⟹ 1− 2𝛾1𝑁1

∗ −
𝑔1𝑍

∗

(1+𝑁1
∗)
2 −𝑀 < 0 gives 

𝑔1𝑍
∗

(1+𝑍∗)2
[(1 + 𝑁1

∗)2(1 − 2𝛾1𝑁1
∗ −𝑀) − 𝑔1𝑁1

∗] < 0      (3.47) 

⟹𝐴2
∗ , < 0, 𝑖𝑓 (1 − 2𝛾1𝑁1

∗ −𝑀), subsuming 𝑁1
∗ =

1

ℎ1−1
 in eqn. (3.47), and simplify, we get 

(1 − 𝑀)(ℎ1 − 1) < 2𝛾1 𝑎𝑛𝑑 𝐵2
∗ < 0  𝑎𝑛𝑑 𝑖𝑓𝛼1 − 𝛿2𝑁1

∗ − 𝑅 < 0  𝑎𝑛𝑑 𝑠𝑢𝑏𝑡𝑖𝑡𝑢𝑡𝑖𝑛𝑔 𝑁1
∗ =

1

(ℎ1−1)
, get 

(𝑅 − 𝛼1)(ℎ1 − 1) < 2𝛾1    (3.48) and 

0 < (𝑅 − 𝛼1)(ℎ1 − 1) < 𝛿2     (3.49) 

 

5. 𝑬𝟓( 𝟎,  𝑵𝟐
∗ 𝒁∗) 

The Jacobean Matrix evaluate at 𝐸5 and it gives 

𝐽(𝐸5) =

[
 
 
 
 
𝐴3
∗ 0 0

−𝛿2𝑁2
∗ 𝐵3

∗ 𝑔2𝑁2
∗(1+𝑁2

∗)

(ℎ2)
2𝑁2

∗

ℎ2𝛼2𝑍
∗ ℎ2𝛼2𝑍

∗

(1+𝑍∗)2
𝐶3
∗

]
 
 
 
 

     (3.50) 

𝐴3
∗ = 1 − 𝑔1𝑍

∗ −𝑀;𝐵3
∗ = 𝛼1 − 2𝛼1𝛾2𝑁2

∗ −
𝑔2𝑍

/∗(1+𝑍∗)

(ℎ2)
2𝑁2

∗  𝑎𝑛𝑑 𝐶3
∗ = −𝛼2 +

𝛼2(1+𝑁2
∗)

(ℎ2)
2𝑁2

∗   

The eigenvalues of 𝐽(𝐸4) have negative real parts 

If  𝐴2
∗ , 𝐵2

∗ 𝑎𝑛𝑑 𝐶2
∗ < 0 𝑎𝑛𝑑 𝑖𝑓𝐴2

∗ < 0, these conditions will hold if 

𝐼𝑓 𝑀 < 0, 𝑅 > 𝛼1 𝑎𝑛𝑑 ℎ1 > 1 And then we have 

𝑁2
∗ < min {

1

𝛾2
,

1

(ℎ1−1)
}         (3.51) 

 

3.5.1. Global Stability of the Steady States  

3.5.2. Global Stability of the Co -Existence Equilibrium point – 𝑬𝟔 (𝑵𝟏
∗ , 𝑵𝟐

∗ , 𝒁∗ )  

In this section, First, we choose a suitable Lapunove Function, from which conditions for the global asymptotic stability of the co – 

existence point 𝑬𝟔 (𝑁1
∗, 𝑁2

∗, 𝑍∗ )  are derived. For this case we prove a lemma, based on the work of (Takeuchi – 1996); (Chaudri 

and Kar -2002) and (Dubey and Upadhyay – 2004). And one theorem by our self 

 

Lemma – 3.5. 1. 

The set𝜑 = {0 ≤ 𝑁1 ≤
1

𝛾1
; 0 ≤ 𝑁2 ≤

1

𝛾2
; 0 ≤ 𝜎1𝑁1 + 𝜎2𝑁2 + 𝑍 ≤

𝜌

𝜏
 }  𝑤ℎ𝑒𝑟𝑒 𝜎1 =

𝑒1ℎ1

𝑆1𝑔1
; 𝜎2 =

𝑒2ℎ2

𝑆2𝑔2
; 

𝜌 =
𝜎1

𝛾1
(𝑆1 + 𝜏) +

𝜎2

𝛾2
(𝑆1 + 𝜏) 𝑎𝑛𝑑 𝜏 < 𝑒, it is a region of attraction for all solutions initiating in the interior of the positive 

region(𝑁1, 𝑁2, 𝑍
∗) 

Proof:  

From the first equation of (3.4), note that  
𝑑𝑁1

 𝑑𝜏
< 𝑁1(1 − 𝛾1𝑁1) 

⟹𝑁1 <
Γ

𝑒−𝜋𝜏+𝛾1Γ
 𝑤ℎ𝑒𝑟𝑒 Γ =

𝑁1(0)

𝑁1(0)𝑁2
 𝑎𝑠 𝜏 → ∞, and then we get 

𝑁1(𝜏) =
1

𝛾1
     (3.53) 

Similarly from the system (3.4) second equation we get as 

𝑁2(𝜏) =
1

𝛾2
     (3.54) 

Now, define a function 𝑊(𝜏) = 𝜎1𝑁1(𝜏) + 𝜎2𝑁2(𝜏) + 𝑍(𝜏) for real positive number 𝜂, and then we have  

�̇�(𝜏) + 𝜂𝑊(𝜏) =  𝜎1𝑁1̇(𝜏) + 𝜎2𝑁2̇(𝜏) + 𝑍(𝜏) + 𝜂 (𝜎1𝑁1(𝜏) + 𝜎2𝑁2(𝜏) + �̇�(𝜏)) = 𝑒  (3.55) 

Substituting for 𝑁1̇(𝜏), 𝑁2̇(𝜏) 𝑎𝑛𝑑  �̇�(𝜏), using (3.4) into equation (3.53) and simplifying, we get 

�̇�(𝜏) + 𝜂𝑊(𝜏) = {
 𝜎1𝑁1̇(𝑆1 + 𝜂) + 𝜎2𝑁2̇(𝑆2 + 𝜂) − σ1𝛾1𝑁1

2 − σ2𝛾2𝑁2
2

−σ1𝑆1𝛿1𝑁1𝑁2 − σ1𝑆1𝛿2𝑁1𝑁2 − σ1𝑆1𝑀𝑁1 + (𝜂 − 𝑒)𝑍
}  

Suppose that, if we choose 𝜂 < 𝑒, we will get 

𝑊(𝜏) ≤
𝜎

𝜂
(1 − 𝑒−𝜂𝜏) + �̇�(0)𝑒−𝜂𝜏  𝑎𝑠 𝜏 → ∞⟹0 ≤  𝑊(𝜏) ≤

𝑒

𝜂
 

Hence completes the proof of Lemma 
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Theorem – 3.52 

Let the following inequalities hold in the region 𝜑 as in (3.52), and then the co – existence equilibrium point 𝐸6 (𝑁1
∗,𝑁2

∗,𝑍∗ ) is 

globally stable with respect to all solutions initiating in the interior of 𝜑 and then we have 

{
𝑍∗ < min {

𝛾2𝑄2

𝑔2
,
𝛾1𝑄1

𝑔1
 } ; 𝛿1 + 𝛿2 > 2√𝛾1𝛾2; 𝑁1

∗ =
ℎ1−𝑔1

𝑔1

𝑁2
∗ <

ℎ2(𝑔1+𝛾1𝑄1)−𝑔1𝑔2

𝑔1𝑔2
; (𝛾1 −

𝑔1𝑍
∗

𝑄1
) > (

𝛿1+𝛿2

2
)
2

; ℎ1 > 𝑔1; ℎ2 > 𝑔2  
}  

Proof: 

By using Lemma 3.51 and let us take the following Lapunove function 

𝑉(𝑁1, 𝑁2, 𝑍) =
1

𝑆1
[𝑁1 −𝑁1

∗ − 𝑁1
∗ ln (

𝑁1

𝑁1
∗)] +

1

𝑆2
[𝑁2 − 𝑁2

∗ − 𝑁2
∗ ln (

𝑁2

𝑁2
∗)] +

1

𝑒
[𝑍 − 𝑍∗ ln (

𝑍

𝑍∗
)]  

Differentiating 𝑉 with respect to time 𝑡; we get, 

�̇�(𝑁1, 𝑁2, 𝑍) =
(𝑁1−𝑁1

∗)

𝑆1𝑁1
 �̇�1

∗(𝑡) +
(𝑁2−𝑁2

∗)

𝑆2𝑁2
 �̇�2

∗(𝑡) +
(𝑍−𝑍∗)

𝑒𝑍
�̇�∗(𝑡)  

Substituting in the above expression for𝑁1
∗, 𝑁2

∗, 𝑎𝑛𝑑 �̇�∗(𝑡) from the system of equations (3.4), get 

Hence completes the proof of theorem – 3.52.  

 

4. NUMERICAL SIMULATION  

In this section, we will do the numerical simulation of the 

model represented by equations (3.4) by using MATLAB 

software. (MATLAB – program is available in Appendix – 

A). Analytical studies become complete only with the 

numerical justification of the results. Qualitative analysis of 

the main features in the system is described by numerical 

simulations. Therefore, we assign some hypothetical data in 

order to verify the analytical result that has been obtained. 

The numerical experiments are conducted to examine the 

dynamical behaviour of the system. It is obvious that 

changing the parameter values change the numerical out 

comes. So, every different set of parameters give unique 

results.  

4.1. The Effect of harvest preys 𝑵𝟏 𝒂𝒏𝒅 𝑵𝟏  

Harvesting of one or more animal species of an ecosystem 

can stabilize or destabilize the dynamics of the ecosystem. In 

a Linear Lotka – Volterra Model with constant effect 

harvesting of both preys and predators, it is known that 

constant effort harvesting raises the average number of preys 

per cycle and lowers the average number of predators. 

(Borelian and Coleman – 2004)  

 

4.2. Select Parameters values from different authors assumptions  

Table – 4.2: Parameters Values  

Parameters Values Selected from Different articles 

𝑺𝟏 𝒂𝒏𝒅 𝑺𝟐 1.820 and 

0.730 

Freedman – 1980, "Tropic Interactions of Prey – Predator System” Ecological Modelling, 

35:1835, 1 

𝜸𝟏 𝒂𝒏𝒅 𝜸𝟐 0.110 and 

0.001 

Freedman – 1980, "Tropic Interactions of Prey – Predator System” Ecological Modelling, 

35:1835, 1 

𝜹𝟏 𝒂𝒏𝒅 𝜹𝟐 1.000 and 

0.001 

Gleeson S. K. – 1994, “Density Dependency is better than ration Dependency” Ecology, 75: 1834 

– 1835. 

𝒈𝟏 𝒂𝒏𝒅 𝒈𝟐 0.040 and 

0.001 

Freedman – 1980, "Tropic Interactions of Prey – Predator System” Ecological Modelling, 

35:1835, 1 

𝑴 𝒂𝒏𝒅 𝑹 3.000 and 

2.000 

Without loss of generality, Our Suitable Assumption 

𝒆 0.500 Gleeson S. K. – 1994, “Density Dependency is better than ration Dependency” Ecology, 75: 1834 

– 1835 

𝒉𝟏 𝒂𝒏𝒅 𝒉𝟐 0.125 and 

0.500 

Green, E. – 2004, “The effects of a mart predator in a one predator – two preys’ system” (: 

http/green e/University of Chicago) 

Assume that, the initial conditions 𝑁1 𝑎𝑛𝑑 𝑁2, are 800 and 600 respectively, were used for the simulations.   
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Results – by Graphical Approach 

Type – 1 Type – 2 Type – 3 
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Fig – 1: Graph of prey 𝑵𝟏, 𝑵𝟐 𝑎𝑛𝑑 

𝑌 against time when (M=0.01; 

R=0.02; 𝑺𝟏 = 1.8; 𝑎𝑛𝑑 𝑺𝟐 = 0.73) 

This graph shows that prey 𝑵𝟏 ↑ 

(increases when prey 𝑵𝟐 ↓ 

(decreases)highly as predator 𝑌 

increases slightly 
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Fig – 2: Graph of prey 𝑁1, 𝑁2 𝑎𝑛𝑑 𝑌 

against time when (M=0.02; R=0.05; 

𝑺𝟏 = 1.52 𝑎𝑛𝑑 𝑺𝟐 = 0.73) This graph 

shows that preys 𝑵𝟏 , 𝑵𝟐 and predator 

𝑌 become extinct if the harvesting rate 

is greater or equal to its intrinsic 

growth rates 𝑺𝟏 𝑎𝑛𝑑 𝑺𝟐 - Type – 2 
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Fig – 3: Graph of preys 𝑁1, 𝑁2 𝑎𝑛𝑑 𝑌 

against time when (𝑺𝟏 = 3 = 𝑀; 𝑺𝟐 = 2 = 𝑅 

This graph shows that prey 𝑵𝟏  , slightly 

increases while prey 𝑵𝟐  increases up to its 

carrying capacity and predator 𝑌 decrease 

to zero - Type –3 

 

5. DISCUSSION – CONCLUSION AND 

RECOMMENDATIONS  

5.1. Discussion  

A mathematical model was proposed and analyzed to study 

the dynamics of two – prey – one predator systems in which 

the predator showed a Holling Type – II response to one prey 

which was also harvested and a Ratio – Dependent Response 

to the other prey which was also harvested. All the Seven 

Possible Equilibrium Points were analyzed for Local and 

Global Stability. The harvesting rate was found to play a 

crucial role in Stabilizing System.  

(Theorem – 3.3.1) showed that the three species would co – 

exist if 𝑁1 𝑎𝑛𝑑 𝑁2 were not harvested beyond its intrinsic 

growth rate, the predator 𝑌 converted the biomass of prey 𝑁1, 

into fertility at a rate greater than the predator natural 

mortality rate and the time it took to handle prey 𝑁1. Also, the 

rate at which the predator captures prey 𝑁2 should be greater 

than the product of the intrinsic growth rate of 𝑁2 (Dubey and 

Upadhyay – 2004) and also discovered that the predator’s 

mortality and food conversion coefficient played a crucial 

role in determining the stability behaviour of Planar 

Equilibrium in Ratio – Dependent Models. In (Akcakaya et 

al. – 1995), it was discovered that ratio – dependent models 

can have stable equilibrium, limit cycles and extinction of 

both preys.  

 

5.2. Conclusion  

In this article, conditions or existence of all the equilibrium 

points (Steady State were established/\ 

1. It was found that the prey 𝑁1 they can exist on their own 

or in presence of the prey 𝑁2 and/or the predator 𝑌 only 

if the intrinsic rate of the preys 𝑁1 𝑎𝑛𝑑 𝑁2 were greater 

than the rate at which they are harvested.  

2. The prey 𝑁1 and prey 𝑁2 would co – exist in the absence 

of the predator 𝑌 so long as the intrinsic rate of the preys 

𝑁1 𝑎𝑛𝑑 𝑁2 were greater than the rate at which, they are 

harvested and the inter specific competition among the 

preys 𝑁1 𝑎𝑛𝑑 prey 𝑁2 was negligible.  

3. The existence of the predator 𝑌 with the either the prey 

𝑁1 alone or the prey 𝑁2 alone required that the proportion 

of biomass of each prey species converted into fertility 

(Reproductive Rate) the predator must be greater than the 

product of the predator’s natural mortality rate, and the 

time it takes to handle the prey  

4. The co – existence of all three species required among 

others 𝐻1 > 𝑆1;𝐻2 > 𝑆2; This inequality shows the 

parameters that must be controlled for the co – existence 

of the three species also,  

5. The conditions for the local and global asymptotic 

stability of the steady states were established,  

𝑁1  

𝑁2  

𝑍  

  

𝑁1  

𝑁2  

𝑍  

  

𝑁1  

𝑁2  

𝑍  
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6. The conditions for the local asymptotic stability of the 

steady state were in most cases found to be similar to 

those for the existence of the steady states.  

7. The global existence of the co – existence steady state 

𝐸6, stated in form of theorem (3.5.1)  

8. The model is rich in dynamical behaviour and establishes 

various conditions under which the prey can exist with or 

without predation.  

 

5.3. Summary  

In this article, we have seen that whenever  𝐻1 > 𝑆1; 𝐻2 >

𝑆2the system is not ecologically feasible as it gives negatives. 

This implies that the harvesting rate of the prey 𝑁1 𝑎𝑛𝑑 𝑁2 

should never be allowed to exceed its intrinsic growth rate. 

We note that whenever 𝑆1 𝑎𝑛𝑑 𝑆2 increased, the population 

density of 𝑌 increased while that of 𝑁1 𝑎𝑛𝑑 𝑁2 decreased. 

This clearly illustrates that as the intrinsic growth rate of the 

prey increases, the population density of the predator species 

will increase as well.  

 

5.4. Recommendations  

Basing on the results of Qualitative Analysis of the model, we 

recommended for researchers and others that  

a. The prey species should not be harvested at a rate higher 

than their intrinsic growth rate. However Optimal 

harvesting of the preys 𝑁1 𝑎𝑛𝑑 𝑁2 at a rate much lower 

than their intrinsic growth rate is permissible, since this 

would not lead to collapse of the system in the long term.  

b. The population density of the predators can be increased 

drastically by increasing the intrinsic growth rate of the 

prey species.  

c. The population density of the predators depends mainly 

on the biomass of the prey 𝑁1 than of prey 𝑁2, hence any 

attempt to control the population density of predators 

should be based on controlling the population density of 

the prey 𝑁1 
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Appendix - A: Mat lap Code S:  

1.a.   Prey Predator Model  

Function start %--------------------------------------------------------------------------------------------------% 

 % starting script to the module’ 𝑁1   𝑁2    𝑍 model’  

%-------------------------------------------------------------------------------------------------------------------%  

% Implements the basic 𝑁1 𝑁2 𝑍 model, and plots simulation results  

 

% User Section 1: Definition of model parameters  

% These parameters are passed to the function that calculates the derivatives.  

% Note: Do not change the name ‘param’ 

 Param. 𝑆1 = 1.82; % Set the parameter 𝑆1 of the model  

Param. 𝑆2 = 0.73 % Set the parameter 𝑆2 of the model  

Param. 𝐺2 = 0.01;  % Set the parameter 𝐺1 of the model  

Param. 𝐺2 = 0.01; % Set the parameter 𝐺2 of the model  

Param. 𝐶1 = 1.00; % Set the parameter 𝐶1 of the model  

Param. 𝐶2 = 0.001; % Set the parameter 𝐺2 of the model  

Param. 𝐽1 = 0.04; % Set the parameter 𝐽1 of the model  

Param. 𝐽2 = 0.01; % Set the parameter 𝐽2 of the model  

Param. 𝑀 = 0.01; % Set the parameter 𝑀 of the model  

Param. 𝑅 = 0.02; % Set the parameter 𝑀 of the model  

Param. 𝑀 = 0.5; % Set the parameter 𝐸 of the model  

Param. 𝐻1 = 0.125; % Set the parameter 𝐻1 of the model  

Param. 𝐻2 = 0.5; % Set the parameter 𝐻2 of the model  

% This us the title string for the plot window, model_ title=’prey predator model’; %  

User Section 2: Definition of initial conditions  

% Initial conditions are the values of all variables at time zero,  

% Note: Do not change the name ‘initial’! Define the initial values in the same order  

% 𝑎𝑠 𝑡ℎ𝑒 𝑑erivatives 𝑖nitial, 𝑁1 = 0.2;  

% set the initial value of ‘𝑁1’ Initial, 𝑁2 = 0.01; % set the initial value of ‘𝑁2’ Initial, 𝑍 = 0.04;  

% set the initial value of ‘𝑍’  

% User Section 3: Definition of the simulation system 𝑒𝑛𝑑_𝑡𝑖𝑚𝑒 = 100 

% User Section 4: Definition of the ODE system  

% % 𝑓unction 𝑑𝑒𝑟𝑖𝑣 = 𝑜𝑑𝑒𝑠𝑦𝑠𝑡𝑒𝑚 (𝑡, 𝑥, 𝑝𝑎𝑟𝑎𝑚) % Function to calculate derivatives of the 𝑆1 model  % Input: 

 % 𝑡:Time (not used in this example because there is no explicit time dependence)  

 % 𝑥: Vector of the current values of all variables in the same order as we can define the initial  

% 𝑣alues: (𝑁1, 𝑁2, 𝑍) % 𝑝aram: Used to past parameter values.  

% Output:  

% 𝑑erive: Column vector of derivatives, must be the same order as the input vector 𝑥,  

𝑁1 = 𝑥(1);  

𝑁1 = 𝑥(2);  

𝑁1 = 𝑥(3);  

𝑑𝑁1 =param.𝑆1 ∗ 𝑁1 ∗ (1 − (𝑝𝑎𝑟𝑎𝑚. 𝐺1 ∗ 𝑁1)) − (𝑝𝑎𝑟𝑎𝑚. 𝐶1 ∗ 𝑁2) − (𝑍 ∗ 𝑝𝑎𝑟𝑎𝑚.𝐽1)/ [(1 ∗ 𝑁1) − (𝑝𝑎𝑟𝑎𝑚 . 𝑀)];  

𝑑𝑁2 =param.𝑆2 ∗ 𝑁2 ∗ (1 − (𝑝𝑎𝑟𝑎𝑚. 𝐺2 ∗ 𝑁2)) − (𝑝𝑎𝑟𝑎𝑚. 𝐶2 ∗ 𝑁1) − (𝑍 ∗ 𝑝𝑎𝑟𝑎𝑚.𝐽2)/ [(1 ∗ 𝑁2 + 𝑍) − (𝑝𝑎𝑟𝑚. 𝑅)]; 𝑑𝑍 =param.𝐸 

∗ 𝑍 ∗ (1 − (𝑝𝑎𝑟𝑎𝑚. 𝐻1 ∗ 𝑁1))/(1 + 𝑁1)(𝑝𝑎𝑟𝑎𝑚. 𝐻2 ∗ 𝑁2)/(1 + 𝑁2 + 𝑍);  

𝑑𝑒𝑟𝑖𝑣 = [𝑑1; 𝑑𝑁2; 𝑑𝑍];  

𝑒𝑛𝑑  

%  

% Now we solve the ODE system and plot the results  

%  
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% Extract initial values from the ‘initial’ structure and collect them in a column vector for use in ‘ode45’ 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 _𝑣𝑎𝑙𝑢𝑒𝑠, =[ ] ); 

𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 _𝑛𝑎𝑚𝑒𝑠 = 𝑓𝑖𝑒𝑙𝑑𝑛𝑎𝑚𝑒𝑠 (𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ); 𝑓𝑜𝑟 𝑖 = 1: 𝑙𝑒𝑛𝑔𝑡ℎ (𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒_𝑛𝑎𝑚𝑒𝑠) 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑣𝑎𝑙𝑢𝑒𝑠 = [𝑖𝑛𝑖𝑡𝑖𝑎𝑙 _𝑣𝑎𝑙𝑢𝑒𝑠; 𝑖𝑛𝑖𝑡𝑖𝑎𝑙, 

(𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 _𝑛𝑎𝑚𝑒𝑠 (𝑖))];  

𝑒𝑛𝑑  

% Integrate the ODE system  

[𝑡, 𝑦] = 𝑜𝑑𝑒45(𝐶(𝑡, 𝑥)𝑜𝑑𝑒 _𝑠𝑦𝑠𝑡𝑒𝑚 (𝑡, 𝑥, 𝑝𝑎𝑟𝑎𝑚), … )[0,  

𝑒𝑛𝑑_𝑡𝑖𝑚𝑒] … . , 𝑖𝑛𝑖𝑡𝑖𝑎𝑙)_𝑣𝑎𝑙𝑢𝑒𝑠, …,[ ];  

% 𝑝repare legend texts  

𝑙egend) _texts= 𝑐𝑒𝑙𝑙(𝑘𝑒𝑛𝑔𝑡ℎ(𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒_𝑛𝑎𝑚𝑒𝑠), 1)  

𝑓𝑜𝑟 𝑖 = 1: 𝑙𝑒𝑛𝑔𝑡ℎ (𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒_𝑛𝑎𝑚𝑒𝑠)  

𝑡𝑒𝑥𝑡 =[ 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒_𝑛𝑎𝑚𝑒𝑠 (𝑖), (t)’]; 𝑙egend texts(𝑖) = 𝑡𝑒𝑥𝑡;  

𝑒𝑛𝑑 

 %𝑝lot the results  

𝑝lot(𝑡. 𝑦, ′ 𝑖𝑛𝑒𝑤𝑖𝑑𝑡ℎ ′ , 3);  

𝑥lable(′𝑡𝑖𝑚𝑒 ′ )  

𝑦lable(′𝑛𝑢𝑚𝑏𝑒𝑟 𝑝𝑟𝑒𝑦𝑝𝑟𝑒𝑑𝑎𝑡𝑜𝑟′) 

 


