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In this article, we proposed and analyzed a mathematical model for the so – called city – effect 

in what in which an earthquake can be locally disturbed by the collective response of tall 

buildings in the large city. We use a set of equations c0upling vibrations buildings in buildings 

to motion under the ground. These equations were previously studied by different authors the 

existence of the seismic wave was ensured by a method of Numerical solutions. None those 

authors do not consider differential methods to show the existence of earthquake due to tall 

buildings. Furthermore, we show how we can solve for the wavenumber in a non – linear 

equation and we are able to find resonant frequencies coupling seismic waves and vibrating tall 

building which ensure the existence seismic wave due to building. 
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1. INTRODUCTION 

1.1. Background of the Study 

Seismic waves are the waves of energy caused by the sudden 

breaking of rock within the earth or seismic waves are the 

waves of energy produced by an earthquake [7], [8]. They are 

the energy that travel through the earth and recorded on 

seismograph. An earthquake is a trembling of Earth caused 

by sudden release of stored energy, usually along faults. It has 

been observed that when an earthquake strikes a large city, 

the seismic activity is altered by the collective response of the 

buildings of the city [14]. This activity is called “the City = 

Effect” [9] and these seismic waves primarily of two types 

called  

a. The Body Waves and Surface Waves 

These two types together cause shaking of ground (Surface of 

the Earth) on which the buildings are founded. The 

characteristics of the ground shaking control earthquake 

responses of buildings, in addition to the building 

characteristics. The ground motion can be measured in the 

form of acceleration, velocity or displacement. Earth 

scientists (Geologists) are interested in capturing the size and 

origin of the earthquakes worldwide and measure feeble 

ground displacements even at great distances from the 

epicenter of the earthquakes. Instruments that measure these 

low-level displacements are called Seismographs. The 

vicinity of the epicenters of large earthquakes the ground 

shaking is violent [2]. Seismographs get started as their 

designs is such that they get saturated under large 

displacement shaking and become ineffective in capturing the 

displacement of the ground. And on the other hand, engineers 

are interested in studying levels of ground making at which 

buildings are damaged and are conversant with forces (As 

part of the design process of buildings). Hence this motivated 

the developments of instruments called Accelerographs that 

recorded during the earthquake shaking acceleration as 

function of time of the location where the instrument is 

placed. These instruments successfully capture the ground 

shaking even in the near field of the earthquake faults, where 

the shaking is violent [4]. 

 

The two most important variables affecting earthquake 

changes are 

1. The intensity of ground shaking caused by the quake 

coupled and the quality of the engineering of structures 

in the region 

2. The level of shaking in turn, is controlled by the 

proximity of the earthquake source to the affected region 

and the types of rocks that seismic waves pass through in 

route (particularly these at the stronger the shaking. 

But there have been large earthquakes with very little damage 

either because they caused little shaking or because the 

buildings more are, they caused little shaking or because the 

building were built to withstand that kind of shaking. In other 

words, moderates’ earthquakes have caused significant 

damage either because the shaking was locally amplified or 

more likely because the structures were poorly engineered [11] 

During an earthquake, building oscillate. But not all buildings 

respond to an earthquake equally. Small buildings are more 
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affected or shacked by high frequency waves (short and 

frequent). For example,  

“A small boat sailing in the ocean will not be greatly affected 

by a large swell. On the other hand, several small waves in 

quick succession can overturn or capsize the boat”,  

In much the same ways small building experiences more 

shaking by high – frequency earthquake waves. Large 

structures or high – rise buildings are more affected by long 

period or slow shaking.  For instance; “An ocean lines will 

experience little disturbance by short waves in quick 

succession”. However, “A large swell will significantly affect 

the ship. Similarly, a skyscraper will sustain greater shaking 

by long – period earthquake waves than by the shorter waves 
[16]. 

2. DISCUSSION AND ANALYSIS 

2,1. The Associated Spectral Problem 

The time harmonic solution for the city – effect modeling 

system of equation is as follows. We set 

𝜔(𝑡, 𝑥, 𝑦) = Φ(𝑥, 𝑦)−𝑖𝜇𝑡 

 (2.1.1) 

Here, Φ:Ω ⟶ ℝ represents the soil displacement 𝜇 > 0 is the 

rescale frequency. Now let us take 

𝛼 = 𝑢𝑗;  𝜂 = 𝑣𝑗  of the buildings. Then after necessary 

differentiation in a system (2.1) 𝑡𝑜 (2.5) we obtain the 

corresponding eigenvalues. Now we assign 

−𝑠Δ Φ = p𝜇2Φ 𝑖𝑛 Ω   

 (2.1.2) 

𝑘(𝜂 − 𝛼)𝜇2𝑚1𝜂;  ℝ(Φ) − 𝑘(𝜂 − 𝛼) = 𝜇
2𝑚𝑜𝛼  

 

 (2.1.3) 

Φ = 𝛼, 𝑜𝑛 Γ𝑗   𝑎𝑛𝑑 
𝜕Φ

𝜕𝑦
= 0  𝑜𝑛 Γ𝐹𝑟𝑒𝑒   

 (2.1.4) 

The last step is the non – dimensionalization of the 

problem [(4.2) – (4.4)]. We introduce a characteristic 

length 1, The non – dimensional spatial coordinates and 

non – dimensional frequency are 

𝑥′ =
𝑥

𝑙
;  𝑦′ =

𝑦

𝑙
; 𝜉 = 𝜇

1

𝛽
  

 (2.1.5) 

Note that, we will omit primes and write 𝑥 𝑎𝑛𝑑 𝑦 in 

future, but these are the non – dimensional coordinates. 

Set  Ω;  Γ;  Γ𝑓𝑟𝑒𝑒 changes accordingly, but we will keep 

the notations. The non – dimensional city parameters are: 

𝛾𝑏 =
𝑚1

𝑚0
;  𝑓𝑏 =

𝑙𝑏

𝑙
;  Υ =

𝜌𝑏

𝜌
; 𝑏 =

𝛽𝑏

𝛽
   

 (2.1.6) 

First, we set, 

𝜌(𝜉2) = 𝑐𝑏
2𝜉2 − 𝑏2𝑓𝑏

2 =
2𝑐𝑏
2𝜉2

𝑓𝑏
(𝑐𝑏

2𝜉2 −
𝛾𝑏+1

𝛾𝑏
) 𝜌(𝜉2) 

  

 (2.1.7) 

We can calculate 𝛼𝑗  𝑎𝑛𝑑𝑑 𝜂𝑗 as 

𝛼𝑗 = 𝜙(𝑥, 0) 𝑓𝑜𝑟 (𝑥, 0) 𝑖𝑛 Γ𝑗   𝑎𝑛𝑑 𝜂𝑗 =
𝑏𝑥2𝑓𝑏

2𝑐𝑥𝑗

𝜌(𝜉2)
 

 

 (2.1.8) 

After simple calculations we will get finally, the 

following non – linear eigenvalue problem 

Δ𝜙 + 𝑘2𝜑 = 0 𝑖𝑛 Ω   

 (2.1.9) 
𝜕𝜙

𝜕𝑦
= 0 𝑖𝑛 Γ𝑓𝑟𝑒𝑒   

 (2.1.10) 

𝑞(𝑘2) 𝜙(𝑥, 0) =

𝑝(𝑘2) ∫
𝜕𝜙

𝜕𝑦

.

Γ𝑗
(𝑠, 0)𝑑𝑠  𝑓𝑜𝑟 (𝑥, 0) 𝑖𝑛 Γ𝑗  𝑎𝑛𝑑 𝑗 𝑖𝑛 [1, 𝑁] 

 (2.1.11) 

For 𝑘 =  𝜉 𝑤ℎ𝑒𝑟𝑒 𝑘 is the value of wavenumber and also 

here  𝑘 > 0. Our main objective is found values of the 

non – dmensionalized frequency  𝑘 for which system 

[(4.9) – (4.11)] will be solvable, For a careful derivation 

of how given the mass density, the shear rigidity of the 

building and the ground, the height and the width of the 

building, the mass at the top of the building and the mass 

of the foundation of the building, after non – 

dimensionalization, and then we arrive the following 

system of equations, and assume that the building has 

rescaled width is 1 and is standing on the 𝑥1 −axis, so 

that, its foundation mat=y be assumed to be the line 

segment Γ = [−
1

2
,
1

2
], we get, 

Δ𝜙 + 𝑘2𝜑 = 0 𝑖𝑛 ℝ   

 (2.1.12) 

𝜙 = 1 𝑖𝑛 Γ   

 

 (2.1.13) 
𝜕𝜙

𝜕𝑦
= 0 𝑖𝑛 (𝑦 = 0) Γ⁄    

 

 (2.1.14) 
𝜕𝜙

𝜕𝑟
= −𝑖𝑘 𝜑 = 𝑂(𝑟−1)   

 (2.1.15) 

𝑞(𝑘2) =  𝑝(𝑘2) ∫
𝜕𝜙

𝜕𝑦

.

Γ𝑗
(𝑠, 0)𝑑𝑠     

 (2.1.16) 

𝑤ℎ𝑒𝑟𝑒, 𝑝(𝑡) = 𝑐1𝑡 − 𝑐2;   𝑞(𝑡) = 𝑡(𝑐3𝑡 − 𝑐4)  

 

 (2.1.17) 

Here,  𝑘 > 0 is the wavenumber and  𝑟 = √𝑥1
2 + 𝑥2

2

 , the 

rescaled physical displacement is ℝ𝑒𝜙𝑒−𝑘𝑡 and the 

constants 𝑐1, 𝑐2, 𝑐3. 𝑐4 are determined by the physical 

properties of the underground and the building. Note that 

the system [(4.12) – (4.17)] will be non – linear in the 

unknown wavenumber 𝑘, The target of this article is to 

show the following theorem.  
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Theorem – 1: 

For any values of the constants 𝑐1, 𝑐2, 𝑐3. 𝑐4 and the 

system [(4.12) – (4.17)] have at least one solution in 𝑘, 

that is, there exists a positive 𝑘 and a function and it has 

locally  𝐻1 regularity in ℝ2 such that equations [(4.12) – 

(4.17)] are satisfied. Moreover, the system of equations 

has at most finite number of solutions in 𝑘. In this 

theorem, the standard arguments can show that if we 

have  𝑥 positive 𝑘 system of equations [(4.2) through 

(4.15) is uniquely solvable. This theorem asserts that for 

some of those 𝑘′𝑠   the additional relation (4.16) will 

hold. 

Proof: 

Define 𝐹(𝑘) =  𝑞(𝑘2) =

 𝑝(𝑘2)ℝ𝑒 ∫
𝜕𝜙

𝜕𝑦

.

Γ𝑗
(𝑠, 0)𝑑𝑠 𝑓𝑜𝑟 𝑘 𝑖𝑛  (0,∞)    

 (2.1.18) 

First, we will show that 𝐹 is a real analytic in 𝑘. Then we will 

perform a low frequency and a high frequency analysis of 𝜙. 

The low frequency analysis of 𝜙 will show that  𝐹must be 

negative in (0,∞)  for some positive number. The high 

frequency analysis will prove that lim
𝑘⟶∞

𝐹(𝑘) = ∞, it is 

concluding the proof of this theorem. 

 

3. THE BOUNDARY DIRICHLET CONDITIONS TO 

NEUMANN OPERATOR ANALYTICITY WITH 

RESPECT TO WAVENUMBER. 

Consider,  𝐷 it is the Open Unit Disk in ℝ2 centered at the 

origin. First, we will discuss well known lemma, and it will 

help in the detailed study of the related Dirichlet to Neumann 

operator relevant to our study. 

3.1. Lemma – 1: 

Let 𝑘 > 0 is the wavenumber and  𝑓 is the function in the 

Sobolov space   𝐻1 2⁄ (𝜕𝐷) and then the problem is 

Δ𝑣 + 𝑘2𝑣 = 0 𝑖𝑛 ℝ2\𝐷𝑒     

  (3.1) 

             𝑢 = 𝑓𝜕𝐷   

  (3.2) 
𝜕𝑢

𝜕𝑟
− 𝑖𝑘𝑢 = 𝑂(𝑟=1) uniformly as 𝑟 ⟶ ∞  

  (3.3) 

This system has unique solution written as 𝑓 =

∑ 𝑎𝑛𝑒
−𝑖𝑛𝜃+∞

𝑛=−∞ , we have 

𝑢 = ∑ 𝑎𝑛𝑒
−𝑖𝑛𝜃+∞

𝑛=−∞ [
𝐻−𝑛(𝑘𝑟)

𝐻𝑛(𝑘𝑟)
]   

  (3.4) 

This series and all its derivatives are uniformly 

convergent on any subset on ℝ2 𝑓𝑜𝑟 𝑟 ≥ 𝐴 𝑤ℎ𝑒𝑟𝑒 𝐴 > 1. 

Proof: 

When we are dealing with an interior problem, we seek 

of progressive wave solutions. Considering the fact, 

plane waves are solution to the impose additional 

boundary condition at infinity to equation o Dirichlet and 

Neumann problem in order to guarantee uniqueness.  

To determine Plane wave it is sufficient to look for 

solution 𝑢  that decrease at infinity as 
1

𝑟
  𝑤ℎ𝑒𝑛 

𝑟 = √𝑥1
2 + 𝑥2

2 is the distance from the origin.  

Yet, this is not enough to guarantee uniqueness for 

example 𝑢 =
sin(𝑘𝑟)

𝑟
 is a non-zero solution to the 

Dirichlet and Neumann Problem in free space. 

Thus, we add the extra Summerfield radiation condition 

or outgoing wave condition, that is 

|
𝜕𝑢

𝜕𝑟
− 𝑖𝑘𝑢| ≤

𝑐

𝑟2
   

  (3.5) 

The change of convention in equation (3.3) and it yields 

a radiation condition with the opposite sign 

|
𝜕𝑢

𝜕𝑟
6𝑖𝑘𝑢| ≤

𝑐

𝑟2
   

  (3.6) 

We expect that this ingoing Summerfield condition will 

as well lead to a well – posed problem which we are 

going to prove. 

∆𝑢 + 𝑘2𝑢 = 0 𝑖𝑛 Ω   

  (3.7) 

𝑢|𝑟 = 𝑢𝑑  

  (3.8) 

|
𝜕𝑢

𝜕𝑟
− 𝑖𝑘𝑢| ≤

𝑐

𝑟2
   

  (3.9) 

Where, 𝑢𝑑 it is the Dirichlet Data 

This system [(3.5) to (3.9)] has not unique solution in the 

sphere (Space). We have seen in the case of sphere. We 

need to add the radian condition. A form the condition is   

|
𝜕𝑢

𝜕𝑟
− 𝑖𝑘𝑢| ≤

𝑐

𝑟2
 A weaker for is∫ |

𝜕𝑢

𝜕𝑟
− 𝑖𝑘𝑢|

.

Ω
≤ 𝑐 

  (3,10) 

 

3,3, The0rem – 2 – Uniqueness Theorem 

The exterior Dirichlet and Neumann Problem [(3.5) to 

(3.9)] admit at most one solution in the Hilbert Space 𝐻 

Proof: 

The difference between two solution 𝑢1 𝑎𝑛𝑑 𝑢2 has a 

zero boundary conditions. That is, satisfies 

𝑢|𝑟 = 0  𝑜𝑟  (
𝜕𝑢

𝜕𝑟
)|
𝑟
= 0  

Multiply, the above equations by complex conjugate 𝑢 

and integrate by parts to obtain 

∫ []∇𝑢[2 − 𝑘2|𝑢|2]
.

Ω𝑛𝐵𝑅
𝑑𝑥 − ∫

𝜕𝑢

𝜕𝑟
𝑢𝑑𝜎

.

𝑆𝑅
= 0  

  (3,11) 

At the exterior of the ball 𝐵𝑅 , we expand the solution in 

the spherical harmonics. It holds that 

𝑢(𝑟, 𝜃, 𝜑) = ∑ ∑ [𝛼𝐿
𝑚 (

ℎ𝑙
(1)(𝑘𝑟)

ℎ𝑙
(1)(𝑘𝑅)

) +𝐿
𝑚=𝑡

∞
𝐿=0

𝛽1
(1)𝛼𝐿

𝑚 (
ℎ𝑙
(2)(𝑘𝑟)

ℎ𝑙
(1)(𝑘𝑅)

)𝑌𝑙
(𝑚)] ( 𝜃, 𝜑)   (3.12) 

And (
𝜕𝑢

𝜕𝑟
− 𝑖𝑘𝑢) has the expansion 
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(
𝜕𝑢

𝜕𝑟
− 𝑖𝑘𝑢) =

{
 

 
𝑘𝛼𝐿

𝑚

ℎ𝑙
(1)(𝑘𝑅)

(
𝑑

𝑑𝑟
(ℎ𝑙

(1)(𝑘𝑟) − 𝑖ℎ𝑙
(1)(𝑘𝑟))) +

𝑘𝛽1
(1)
𝛼𝐿
𝑚

ℎ𝑙
(1)(𝑘𝑅)

(
𝑑

𝑑𝑟
ℎ𝑙
(2)(𝑘𝑟)) 𝑌𝑙

(𝑚)

}
 

 
( 𝜃, 𝜑) 

  (3.13) 

Due to the orthogonality of the spherical harmonic 

implies that the integral on the complement of 𝐵𝑅  of the 

form 

𝑢 = ∑ ∑ [𝜃𝑙
(𝑚)(𝑟)𝑌𝑙

(𝑚)] 𝑓𝑜𝑟 𝑟 > 𝑅𝐿
𝑚=𝑡

∞
𝐿=0    

  (3.14) 

And it is, 

∫ |𝑢|2𝑑𝑥
.

𝐵𝑅
= ∑ ∑ ∫ [|𝜃𝑙

(𝑚)(𝑟)|
2
𝑟2]

.

𝑅
𝐿
𝑚=𝑡

∞
𝐿=0 𝑑𝑟  

  (3.15) 

The dominant term in the expression (
𝜕𝑢

𝜕𝑟
− 𝑖𝑘𝑢) is the 

one coming form ℎ𝐿
(2)

, It behaves as 

−2𝑖 (
𝑒−𝑖𝑘𝑟

𝑟
) (

𝛽𝐿
𝑚

ℎ(2)(𝑘𝑅 )
)  

Thus, the convergence of the associated series is possible 

only when all the coefficients 

 

           𝛽𝐿
𝑚 = 0   (3.16) 

We have proved that the solution only the terms ℎ𝑙
(1)

. The 

imaginary part of this expression reduces  

∫ (𝑇𝑅𝑢, 𝑢)
.

𝑆𝑅
= 0   

  (3.17) 

𝑊ℎ𝑒𝑟𝑒, 𝑇𝑅 is the capacity operator on the ball with 

radius  𝑅. From the expression of the operator follows 

𝛼𝐿
𝑚 = 0   

  (3.18) 

From which we infer that, 
𝑢

𝑆𝑅
= 0   

  (3.19) 
𝜕𝑢

𝜕𝑟

𝑆𝑅
= 0   

  (3.20) 

Thus, the solution van9sheson the exterior of the ball  𝛽𝑅. 

Moreover, the Helmholtz equation is the elliptic 

operator, from which it follows that the solution is 

analytic in the domain Ω𝑒 , it is zero. 

 

Remarks: 

There exists a weaker form for the radiation condition 

which is 

lim
𝑅⟶∞

∫ |
𝜕𝑢

𝜕𝑟
− 𝑖𝑘𝑢|

2

𝑑𝜎
.

𝑆𝑅
= 0    

                                                                           (3.21) 

In the same way as above, we get 𝛽𝑙
(𝑚) = 0 and so that 

we get uniqueness of solution. 

Another weaker form for the radiation condition is used 

the following notes. 

Note that, the Fredholm alternative, we know that 

uniqueness existence shows the uniformly convergence 

of the series 

𝑢 = lim
𝑛=−∞

𝑎𝑛𝑒
−𝑖𝑛𝜃

𝐻𝑛(𝑘𝑟)

𝐻𝑛(𝑘)
 

We need to consider the usefulness of Hankel Function. 

3.2. Lemma 3.3. 

The following equivalence as 𝑛 ⟶ ∞ is uniform for all 

 𝑧  in a compact set of (0,∞ ) 

𝐻𝑛(𝑧)~ −
𝑖

𝜋
(
1

2
𝑧)

−𝑛
(𝑛 − 1 )𝑖   

  (3.22) 

Proof: 

For any positive  𝑧  

|𝐽𝑛(𝑧)𝑛𝑖 (
1

2
𝑧)

−𝑛

− 1| =
1

𝑛+1
|∑ (−

1

4
)
𝑧2𝑘(𝑛+1)𝑖

𝑘𝑖(𝑛+𝑘)𝑖

∞
𝑘=1 | ≤

1

𝑛+1
(
1

4
)
𝑘 𝑧2𝑘

𝑘𝑖
   

 (3.23) 

It is clear that 𝐽𝑛~(
1

2
𝑧)

𝑛

(
1

𝑛𝑖
) is uniformly, for all  𝑧, in 

a compact set of (0,∞ ) and then we conclude that it is 

true. 

We have 

𝐻𝑛(𝑘)~ −
𝑖

𝜋
(
1

2
𝑘)

−𝑛

(𝑛 − 1)𝑖  𝑎𝑛𝑑 𝐻𝑛(𝑘𝑟)~

−
1

𝜋
(
1

2
𝑘𝑟)

−𝑛

(𝑛 − 1)𝑖 

⟹ (
𝐻𝑛(𝑘𝑟)

𝐻𝑛(𝑘)
) =

1

𝑟𝑛
 

⟹ (
𝐻𝑛(𝑘𝑟)

𝐻𝑛(𝑘)
) =

1

𝑟𝑛
 uniformly in 𝑟 as long as 𝑟 remains in 

a compact set of (0,∞) 

Let  𝐴 𝑎𝑛𝑑 𝐵 are two real numbers such that 1 < 𝐴 < 𝐵 

and a set  𝑀 = sup|𝑎𝑛| 

⟹ |𝑎𝑛𝑒
𝑖𝑛𝜃 (

𝐻𝑛(𝑘𝑟)

𝐻𝑛(𝑘)
)| ≤

2𝑀

𝑟𝑛
=
2𝑀

𝐴𝑛
 

⟹ |𝑎𝑛𝑒
𝑖𝑛𝜃 (

𝐻𝑛(𝑘𝑟)

𝐻𝑛(𝑘)
)| ≤

2𝑀

𝐴𝑛
 it is bounded and closed. 

⟹For al 𝑛 as large as enough, uniformly for all 𝑟 in [𝐴, 𝐵] 

⟹The above series is uniformly convergent on any compact 

set of ℝ2/𝐷 

3.3. Lemma – 3.4: 

For 𝑧 > 0 the following limit as the following limit as 𝑧 ⟶ 0 

is uniform for all integers 𝑛 different from 0 

lim
𝑧⟶0+

−
𝑧

|𝑛|

𝐻𝑛
′ (𝑧)

𝐻𝑛(𝑧)
= 1   

  (3,24) 

For the special case 𝑛 = 0, we have lim
𝑧⟶0+

−
𝑧

|𝑛|

𝐻𝑛
′ (𝑧)

𝐻𝑛(𝑧)
= 0 

Proof: 

Observe for 𝑛 ≥ 2 

[𝐻𝑛(𝑧) (−
𝑖

𝜋
(
1

2
𝑧)

−𝑛

((𝑛 − 1 )𝑖)
=1
= 1) (𝑛 − 1)] 

It can be bounded by a function in 𝑧 and it is continuous 

on [0,∞) and independent of 𝑛 therefore 
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𝐻𝑛(𝑧)~ −
𝑖

𝜋
(
1

2
𝑘)

−𝑛

(𝑛 − 1 )𝑢(3,25) 

As 𝑧 ⟶ 0+ 

 Uniformly on (0, 𝑏) for fixed  𝑏 using formula  

𝐻𝑛
′ (𝑧) = −𝐻𝑛+1(𝑧) +

𝑛

𝑧
𝐻𝑛(𝑧),   

  (3.26) 

we get 

𝑧

|𝑛|

𝐻𝑛
′ (𝑧)

𝐻𝑛(𝑧)
~1 𝑎𝑠 𝑧 ⟶ 0+ uniformly on [0, 𝑏] for fixed  𝑏 > 0 

For 𝑛 ≤ −2, apply the formula  

𝐻−𝑛(𝑧) = (−1)
𝑛𝐻𝑛(𝑧)  

  (3.27) 

Next to show that, all its derivatives are uniformly convergent 

on any subset of fℝ2 in the form 𝑟 ≥ 𝐴 where 𝐴 > 1 

Thus, we get,  

𝑢𝑟 =∑ 𝑎𝑛𝑒
𝑖𝑛𝜃𝑘 (

𝐻𝑛
′ (𝑘𝑟)

𝐻𝑛(𝑘)
)

∞

𝑛=−∞
 

And then we simply 𝑘 (
𝐻𝑛
′ (𝑘𝑟)

𝐻𝑛(𝑘)
) to do this, let us use 

derivatives of Hankel function. That is, 

               𝐻𝑛
′ (𝑘𝑟) = −𝐻𝑛+1(𝑧) +

𝑛

𝑧
𝐻𝑛(𝑧)     

 (3.28) 

⟹  𝑘 (
𝐻𝑛
′ (𝑘𝑟)

𝐻𝑛(𝑘)
)~ − 𝑘 (

𝐻𝑛+1
′ (𝑘𝑟)

𝐻𝑛(𝑘)
)
𝑛

𝑟
𝑘 (
𝐻𝑛(𝑘𝑟)

𝐻𝑛(𝑘)
) 

Thus, the system −𝑘 (
𝐻𝑛+1(𝑘𝑟)

𝐻𝑛(𝑘)
)~ −

2𝑛

𝑟𝑛+1
 and the term 

𝑛

𝑟
𝑘 (

𝐻𝑛(𝑘𝑟)

𝐻𝑛(𝑘)
)~

𝑛

𝑟𝑛+1
, and then we have 

(
𝐻𝑛 + 1(𝑘𝑟)

𝐻𝑛(𝑘)
)~ −

𝑛

𝑟𝑛+1
 

Set 𝑀 = sup|𝑎𝑛|, it follows that 

|𝑎𝑛𝑒
𝑖𝑛𝜃𝑘 (

𝐻𝑛+1(𝑘𝑟)

𝐻𝑛(𝑘)
)| ≤

2𝑀

𝐴𝑛+1
  𝑓𝑜𝑟 𝑒𝑖𝑛𝜃 ≤ 2 

⟹At this stage we can conclude that the 𝑟 derivatives of the 

given series 

𝑢 = ∑ 𝑎𝑛𝑒
𝑖𝑛𝜃𝑘 (

𝐻𝑛(𝑘𝑟)

𝐻𝑛(𝑘)
)∞

𝑛=−∞  is uniformly convergent on 

any compact set of fℝ2 

Now, we show that the convergence of a  𝜃 derivatives of the 

serries 

𝑢 =∑ 𝑎𝑛𝑒
𝑖𝑛𝜃𝑘 (

𝐻𝑛(𝑘𝑟)

𝐻𝑛(𝑘)
)

∞

𝑛=−∞
 

That is,   𝑢𝜃  is a multiplicative of a series 𝑢 𝑏𝑦 𝑖𝑛 ′𝑖𝑛′ that is 

  𝑢𝜃 = ∑ 𝑖𝑛𝑒𝑖𝑛𝜃𝑘 (
𝐻𝑛(𝑘𝑟)

𝐻𝑛(𝑘)
)∞

𝑛=−∞  and 

|  𝑢𝜃 =∑ 𝑖𝑛𝑒𝑖𝑛𝜃𝑘 (
𝐻𝑛(𝑘𝑟)

𝐻𝑛(𝑘)
)

∞

𝑛=−∞
| ≤

2𝑀𝑖𝑛

𝐴𝑛
 𝑤ℎ𝑒𝑛 𝑀

= sup|𝑎𝑛|  𝑎𝑛𝑑 (
𝐻𝑛(𝑘𝑟)

𝐻𝑛(𝑘)
)~

1

𝑟𝑛 
 

That is,   𝑢𝜃  is closed and bounded series that implies that   𝑢𝜃  

is uniformly converges. 

 

 

 

 

3.4. Lemma – 3.5: 

For any  𝑛 𝑖𝑛 𝑁, |𝐻𝑛(𝑧)| is a decreasing function of z 

on (0,∞) 

Case – 1; 

For 𝑛 ≤ −2 it is obviously true 

Case – 2: 

For 𝑛 > 2 we conclude that from this lemma, and 𝐻𝑛(𝑘𝑟) 

~
𝑖

𝜋
(
1

2
𝑧)

=𝑛
(𝑛 − 1)𝑖, we have 

(
𝐻𝑛(𝑘𝑟)

𝐻𝑛(𝑘)
) ≤ (

𝐻𝑛(2𝑘)

𝐻𝑛(𝑘)
)

≤ 2−(𝑛+1) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖𝑛𝑡𝑒𝑔𝑒𝑟  𝑛 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑛 𝑠𝑜𝑚𝑒 𝑁 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟

≥ 2 

Similarly, we have, 

|𝑘 (
𝐻𝑛,
′ (𝑘𝑟)

𝐻𝑛(𝑘)
)| ≤ |𝑘 (

𝐻𝑛+1(2𝑘)

𝐻𝑛(𝑘)
)| + |

𝑛

𝑟
(
𝐻𝑛(𝑘𝑟)

𝐻𝑛(𝑘)
)|

≤ 2−(𝑛+1) 

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖𝑛𝑡𝑒𝑔𝑒𝑟  𝑛 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑛 𝑠𝑜𝑚𝑒 𝑁 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟 ≥ 2  

Given that, 𝑎𝑛 is bounded, it follows that the series 

∑ 𝑖𝑛𝑒𝑖𝑛𝜃𝑘 (
𝐻𝑛(𝑘𝑟)

𝐻𝑛(𝑘)
)∞

𝑛=−∞  and its  r derivatives are uniformly 

converges for all r in [2,∞] 

Finally, we need to show that the uniform convergent of 

 𝑢𝑟𝑟  𝑎𝑛𝑑 𝑢𝜃𝜃 𝑓𝑜𝑟 𝑟 > 1. 

 

Remarks: 

Similar argument can be carried out for all second derivatives. 

Next, we recall that 𝐻𝑛(𝑟) satisfies the Bessel Differential 

Equations 

𝑦′′(𝑟) +
1

𝑟
𝑦′(𝑟) + (1 −

𝑛

𝑟𝑛
) 𝑦(𝑟) = 0 

To argue that each function 𝑒𝑖𝑛𝜃𝐻𝑛(𝑘𝑟) satisfies Helmholtz 

Equation due to the form of the Laplacian in Polar coordinates 

namely, 

𝜕𝑟
2 +

1

𝑟
𝜕𝑟 +

1

𝑟2
𝜕𝜃
2 

All together this shows that the function defined by the series  

𝑢 = ∑ 𝑖𝑛𝑒𝑖𝑛𝜃𝑘 (
𝐻𝑛(𝑘𝑟)

𝐻𝑛(𝑘)
)∞

𝑛=−∞  satisfies 

∆𝑢 + 𝑘2𝑢 = 0 and the equation 

𝜕𝑢

𝜕𝑟
− 𝑖𝑘𝑢 = 𝑂(𝑟−1) 

It is added to the Dirichlet Neumann problem guarantee 

uniqueness. 

3.5. Lemma – 3.6: 

For any 𝑛 𝑖𝑛 𝑁, |𝐻𝑛(𝑧)| is a decreasing function of 

 𝑧 𝑖𝑛 (0,∞) 

Proof: 

This is proved due to the formula derived by Nicholson 

Concept, 

𝐽𝑛
2(𝑧) + 𝑌𝑛

2(𝑧) =
8

𝜋2
∫ 𝑘0

∞

0

2𝑧 sinh(𝑡) cosh(2𝑛𝑡) 𝑑𝑡,

𝑤ℎ𝑒𝑟𝑒 𝑘0(𝑠) = ∫ 𝑒−scosh(𝑡)𝑑𝑡
∞

0
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Note that, for any fixed 𝑟 > 1 and the series 𝑢 =

∑ 𝑖𝑛𝑒𝑖𝑛𝜃𝑘 (
𝐻𝑛(𝑘𝑟)

𝐻𝑛(𝑘)
)∞

𝑛=−∞  𝑖𝑠 in the Sobolov space  

𝐻
1

2(𝜕𝐷) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟 > 1 and that, further application of the 

above formula we will show that the series convergence 

strongly to  𝑓 𝑖𝑛  𝐻
1

2(𝜕𝐷) 𝑎𝑠 𝑟 ⟶ 1+1  

Define the linear operator  

𝑇𝑘(𝑓) = ∑ 𝑎𝑛𝑒
𝑖𝑛𝜃𝑘 (

𝐻𝑛
′ (𝑘𝑟)

𝐻𝑛(𝑘)
)∞

𝑛=−∞    

  (3.29) 

Where, 𝑓 = ∑ 𝑎𝑛𝑒
𝑖𝑛𝜃∞

𝑛=−∞  

 Since 𝑇𝑘 is continuous that is implies 𝑘 (
𝐻𝑛
′ (𝑘𝑟)

𝐻𝑛(𝑘)
)~ −

𝑛 𝑓𝑜𝑟 𝑛 ⟶ ∞ 

According to lemma – 3.1, an equivalent way of defining 𝑇𝑘 

to say that, it maps 𝑓 𝑡𝑜 
𝜕𝑢

𝜕𝑟

𝑟
= 1 𝑤ℎ𝑒𝑟𝑒 𝑢 solution to the 

problem of lemma 3.1. 

Denoted by 〈. 〉 the duality bracket 

between  𝐻𝑛

1

2  𝑎𝑛𝑑   𝐻𝑛
− 
1

2and it extends to the dot product 

〈𝑓, 𝑔〉 = ∫ 𝑓 𝑔
.

𝜕𝐷

 

 

3.6. Lemma 3.7: 

𝑇𝑘 ii is real, analytic in 𝑘  for 𝑘 𝑖𝑛 (0,∞) 

Proof: 

Let  𝑘0 𝑎𝑛𝑑 𝑏 are two real numbers such that  0 < 𝑏 < 𝑘0 

and define 𝐷𝑏(𝑘0) it is the closed disk in the complex plane 

centered at 𝑘0 𝑤𝑖𝑡ℎ 𝑟𝑎𝑑𝑖𝑜𝑢𝑠 𝑏 

To show that, 𝑇𝑘 ii is real, analytic in 𝑘  for 𝑘 𝑖𝑛 (0,∞) in 

operator norm. it suffices to fix 𝑓 𝑎𝑛𝑑 𝑔 𝑖𝑛 𝐻𝑛

1

2  

Simply to show that 𝑅𝑒〈𝑇𝑘(𝑓), 𝑔〉 it is an analytic function 

of 𝑘 𝑖𝑛 𝐷𝑏(𝑘0)  

Take 𝑓 = ∑ 𝑎𝑛𝑒
𝑖𝑛𝜃∞

𝑛=−∞  𝑎𝑛𝑑 𝑔 = ∑ 𝑏𝑛𝑒
𝑖𝑛𝜃∞

𝑛=−∞  and then 

we have 

〈𝑇𝑘(𝑓), 𝑔〉 = 2∏∑ 𝑎𝑛𝑒
𝑖𝑛𝜃∞

𝑛=−∞ 𝑏𝑛𝑒
𝑖𝑛𝜃 𝑘 (

𝐻𝑛
′ (𝑘𝑟)

𝐻𝑛(𝑘)
)  

  

  (3.30) 

Since 𝑘 (
𝐻𝑛
′ (𝑘𝑟)

𝐻𝑛(𝑘)
)~𝑘 (−

𝐻𝑛+1
′ (𝑘𝑟)

𝐻𝑛(𝑘)
) +

𝑛

𝑘
(
𝐻𝑛(𝑘𝑟)

𝐻𝑛(𝑘)
) =

−𝑘
𝐻𝑛+1
′ (𝑘𝑟)

𝐻𝑛(𝑘)
+ 𝑛 = −𝑛 

⟹  𝑘 (
𝐻𝑛
′ (𝑘𝑟)

𝐻𝑛(𝑘)
)~ − 𝑛 ⟹ ∑ |𝑎𝑛𝑏𝑛𝑘 (

𝐻𝑛+1
′ (𝑘𝑟)

𝐻𝑛(𝑘)
)|

∞

𝑛−∞

= ∑ 𝑛|𝑎𝑛𝑏𝑛|

∞

𝑛−∞

< ∞ 

And since, 𝑘 (
𝐻𝑛
′ (𝑘𝑟)

𝐻𝑛(𝑘)
)~ − |𝑛| 𝑓𝑜𝑟 𝑛 ⟶ ∞ uniformly for all 

 𝑘 𝑖𝑛 𝐷𝑏(𝑘0) 

⟹the series is uniformly convergent sum of analytic function 

of 𝑘 thus, 〈𝑇𝑘(𝑓), 𝑔〉 is analytic in 𝐷𝑏(𝑘0) 

 

 

3.7: Lemma – 3.8: 

The operator 𝑇𝑘  converges strongly to the operator 𝑇0 and it 

maps 𝐻
1

2(𝜕𝐷) 𝑖𝑛𝑡𝑜 𝐻− 
1

2(𝜕𝐷) and it is defined by the formula  

𝑇0(𝑓) = ∑ |𝑛|𝑎𝑛𝑒
𝑖𝑛𝜃+∞

𝑛=−∞    

  (3.31) 

Where  𝑓 = ∑ 𝑎𝑛𝑒
𝑖𝑛𝜃+∞

𝑛=−∞  

Proof: 

Since 𝑓 = ∑ 𝑎𝑛𝑒
𝑖𝑛𝜃+∞

𝑛=−∞  𝑖𝑛 𝐻
1

2(𝜕𝐷) 

Write,   ‖𝑇𝑘(𝑓) = 𝑇0(𝑓)‖
𝐻
− 
1
2(𝜕𝐷)

=

|∑
|𝑎𝑛|

2

√𝑛2+1

+∞
𝑛=−∞ 𝑘 (

𝐻𝑛
2(𝑘𝑟)

𝐻𝑛(𝑘)
) − |𝑛|2|and then apply the lemma 

3.3. and then we get required result. 

3.9. Lemma – 3.9: 

Let 𝐿  it is a continuous linear function on  𝐻0,Γ(Ω) and the 

following variational problem a unique solution and then 

find 𝑢 𝑖𝑛 𝐻0,Γ(Ω) such that  

∫ ∇𝑢.
.

Ω
∇𝑢 − ∫ (𝑇0𝑢)𝑣

.

𝜕𝐷
= 𝐿(𝑣) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣 𝑖𝑛 𝐻0,Γ(Ω)  

  (3.32) 

Proof; 

We observe that, due to definition of 𝑇0, 〈𝑇0(𝑓), 𝑓〉 is real for 

all  𝑓  in 𝐻
1

2(𝜕𝐷) 𝑎𝑛𝑑 〈𝑇0(𝑓), 𝑓〉 ≤ 0 

We conclude that, it is uniquely solvable and that the solution 

 𝑢  depends continuously on 𝐿 

Let  𝜑 it is a smooth compactly supported function in 𝐷 and 

it is equal to 1 on  Γ and such that 

𝜑(𝑥1, −𝑥2) = 𝜑(𝑥1, 𝑥2) 𝑓𝑜𝑟 𝑘 ≥ 0 and set 𝑢𝑘  𝑖𝑛 𝐻0,Γ(Ω), it 

is the solution to 

∇𝑢𝑘. ∇𝑣 − 𝑘
2𝑢𝑘𝑣 − ∫ (𝑇𝑘𝑢𝑘)𝑣

.

𝜕𝐷
= ∫ (∇𝜑 +

.

𝜕𝐷

𝑘2𝜑)𝑣, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣 𝑖𝑛 𝐻0,Γ(Ω)   (3.33) 

And we set 𝑢𝑘 = 𝑢𝑘 and then we get required result. 

3.10. Lemma – 3.10: 

For 𝑘 > 0  𝑎𝑛𝑑 𝑢𝑘 satisfies the following properties 

1. 𝑢𝑘 𝑖𝑠 𝑖𝑛 𝐻
′(Ω) 

2. The upper and lower traces on Γ of 𝑢𝑘 are both equal to 

the constant 1 

3. 𝑢𝑘 can extend to a function ℝ2/Γ such that if we still 

denote by 𝑢𝑘 that extension 

(∆ + 𝑘2)𝑢𝑘 = 0  𝑖𝑛   ℝ
2/Γ 

𝜕𝑢𝑘

𝜕𝑟
− 𝑖𝑘𝑢𝑘 = 𝑂(𝑟

−1) uniformly as 𝑟 ⟶ ∞ 

𝑢𝑘(𝑥1, −𝑥2) = 𝑢𝑘(𝑥1, 𝑥2) 𝑓𝑜𝑟 𝑎𝑙𝑙 (𝑥1, 𝑥2) 𝑖𝑛 ℝ
2/Γ 

𝜕𝑢𝑘
𝜕𝑟

(𝑥1, 0) 𝑖𝑓 (0, 𝑥)𝑖𝑛 Γ 

4. Denoted by 
𝜕𝑢𝑘

𝜕𝑥2
 it is the lower trace of 

𝜕𝑢𝑘

𝜕𝑥2
𝑜𝑛 Γ and then 

𝐼𝑚 ∫
𝜕𝑢𝑘

𝜕𝑥2
≤ 0

.

Γ
  (3.34) 

Proof: 

Properties (1) and (2) are obviously true. 

In Properties of (3) the first two conditions of properties of 

(3) holds simply because we can write  
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𝑢

∂D
= 𝑎𝑛𝑒

𝑖𝑛𝜃 (
𝐻𝑛(𝑘𝑟)

𝐻𝑛(𝑘)
)   𝑖𝑛 ℝ2/Ω  and then using the lemma – 

3.1. in the combination to the fact that variational problem 

implies that  𝑇𝑘𝑢𝑘 is the limit of 𝜕 (
𝜕𝑢𝑘

𝜕𝑟
)  𝑎𝑠 𝑟 ⟶ 1− 

To show that the third item in property (3) we set 𝑢�̃�(𝑥1, 𝑥2) 

and for any arbitrary 𝑣 𝑖𝑛 𝐻0,Γ(Ω)  

For  𝑣 (𝑥1, 𝑥2) = 𝑣(𝑥1, −𝑥2), next we observe that 

∫ 𝜕𝑢𝑘 .̃ ∇𝑣 − 𝑘
2

.

Ω

𝑢𝑘 .̃ 𝑣 = ∫∇𝑢�̃� . ∇𝑣 −
.

Ω

𝑘2𝑢�̃�𝑣 

In polar coordinates we have the relation 𝑢�̃�(𝑟, 𝜃) =

𝑢�̃�(𝑟, −𝜃) 𝑎𝑛𝑑 𝑣(𝑟, 𝜃) =  𝑣(𝑟, −𝜃) 

⟹∫ (𝑇𝑘𝑢�̃�)
.

𝜕𝐷

𝑣 = ∫ (𝑇𝑘𝑢�̃�)
.

𝜕𝐷

𝑣 

Finally, since,  𝜑 is even in 𝑥2 ⟹ ∫ (∆𝜑 + 𝑘2𝜑)
.

Ω
𝑣 =

∫ (∆𝜑 + 𝑘2𝜑)
.

Ω
𝑣 

Since the solution of the problem is unique, we must have 

𝑢𝑘 .̃ = 𝑢�̃� proving the third item in (3) 

since,  𝑢𝑘  is even in 𝑥2 ⟹ (
𝜕𝑢𝑘

𝜕𝑥2
) is zero on the line 𝑥2 =

0 𝑚𝑖𝑛𝑢𝑠 𝑡ℎ𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 Γ, proving the last term in (3), 

since u = 1 on Γ; 𝐼𝑚 ∫ (
𝜕𝑢𝑘

𝜕𝑥2
) 𝑢𝑘 = 𝐼𝑚 ∫ (

𝜕𝑢𝑘

𝜕𝑥2
) 𝑢𝑘 =

.

Γ

.

Γ

−𝐼𝑚 ∫ (
𝜕𝑢𝑘

𝜕𝑟
) 𝑢𝑘

.

D
 𝑤ℎ𝑒𝑟𝑒 𝜕𝐷 it is the intersection  of circle 

𝜕𝐷 and the lower half plane 𝑥2 < 0 

We use parity one more time to argue that 

𝑚∫ (
𝜕𝑢𝑘
𝜕𝑟
)𝑢𝑘

.

D

=
1

3
𝐼𝑚∫ (

𝜕𝑢𝑘
𝜕𝑟
) 𝑢𝑘

.

∂D

 

Note that, 𝑢𝑘 it is not zero everywhere and using Redlich’s 

lemma we can claim that  

𝐼𝑚 ∫ (
𝜕𝑢𝑘

𝜕𝑟
) 𝑢𝑘

.

∂D
> 0  

3.11. Lemma – 3.11 (without proof) 

Let 𝑢𝑘 is the solution for all  𝑘 > −0 𝑎𝑛𝑑 𝑠𝑒𝑡 𝑢𝑘 = 𝑢�̃� + 𝜑 

and then we have 

1. 𝑢𝑘 is analytic in 𝑘 𝑑𝑜𝑒 𝑘 > 0 

2. 𝑢𝑘 converges strongly to 𝑢0 𝑖𝑛𝐻0,Γ 
1 (Ω)morepreciously 

there is a constant  𝐶 such that 

‖𝑢𝑘 − 𝑢0‖𝐻.
1((Ω) ≤ 𝐶[𝑘2‖𝑇𝑘 − 𝑇0‖]  

  (3.35) 

3.12 Lemma – 3. 12 

1. Consider (
𝜕𝑢𝑘

𝜕𝑥2
±) the upper and lower traces of (

𝜕𝑢𝑘

𝜕𝑥2 
)  𝑜𝑛 Γ 

and then 

(
𝜕𝑢𝑘

𝜕𝑥2
±) = (

𝜕𝑢𝑘

𝜕𝑥2
−)   

 (3.36) 

2. Consider, 𝐺𝑘(𝑥, 𝑦) =
1

4
𝐻0(𝑘|𝑥 − 𝑦|) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 𝑖𝑛 Ω 

and then we have 

 

1. Consider (
𝜕𝑢𝑘

𝜕𝑥2
±) the upper and lower traces of (

𝜕𝑢𝑘

𝜕𝑥2 
)  𝑜𝑛 Γ 

and then 

               (
𝜕𝑢𝑘

𝜕𝑥2
±) = (

𝜕𝑢𝑘

𝜕𝑥2
−)    

                                                                             (3.36) 

2. Consider, 𝐺𝑘(𝑥, 𝑦) =
1

4
𝐻0(𝑘|𝑥 − 𝑦|) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 𝑖𝑛 Ω and 

then we have  

Consider, 𝐺𝑘(𝑥, 𝑦) =
1

4
𝐻0(𝑘|𝑥 − 𝑦|) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 𝑖𝑛 Ω and 

then we have 

𝑢𝑘(𝑥) = 2∫ 𝐺𝑘(𝑥, 𝑦) (
𝜕𝑢𝑘

𝜕𝑥2
) (𝑦)𝑑𝑦

.

Γ
     

                                                                             (3,37) 

Proof: 

Consider, Ω+ = (𝑥1, 𝑥2) ∈ Ω, 𝑥2 >  0 and Ω− = (𝑥1, 𝑥2) ∈

Ω, 𝑥2, <  0. It is well known from Potential Theory that if 

 𝑥 𝑖𝑛 Ω+ 

𝑢𝑘(𝑥) = ∫ 𝐺𝑘(𝑥, 𝑦)
.

𝜕 Ω+
(
𝜕𝑢𝑘

𝜕𝑛
) (𝑦) −

∫ 𝐺𝑘(𝑥, 𝑦)𝜕 Ω+
(
𝜕𝑢𝑘

𝜕𝑛(𝑦)
) 𝑢𝑘(𝑦)𝑑𝑦   

 (3, 38) 

And 

0 = ∫ 𝐺𝑘(𝑥, 𝑦)
.

𝜕 Ω+
(
𝜕𝑢𝑘

𝜕𝑛
) (𝑦) −

∫ 𝐺𝑘(𝑥, 𝑦)
.

𝜕 Ω+
(
𝜕𝑢𝑘

𝜕𝑛(𝑦)
) 𝑢𝑘(𝑦)𝑑𝑦   

   (3, 39) 

Where 𝑛 it is the exterior normal vector in each case. If  𝑦 it 

is in 𝜕 Ω− and is such that 𝑦2 = 0 

It is clear that, (
𝐺𝑘(𝑥,𝑦)

𝜕𝑛(𝑦)
) = 0, we also use that 𝑢𝑘 It is even in 

𝑥2 so that, (
𝜕𝑢𝑘

𝜕𝑥2
) (𝑥) = 0 if 𝑥2 = 0 and 𝑥, it is not in Γ and 

since 𝑢𝑘 it is even in 𝑥2 and we can find that, for  𝑥 𝑖𝑛 Ω+ 

𝑢𝑘(𝑥) = [∫ 𝐺𝑘(𝑥, 𝑦)
.

𝜕𝐷
(
𝜕𝑢𝑘

𝜕𝑛(𝑦)
) (𝑦) −

𝐺𝑘(𝑥, 𝑦) (
𝜕𝑢𝑘

𝜕𝑛(𝑦)
) 𝑢𝑘(𝑦)] 𝑑𝑦 − ∫ 𝐺𝑘(𝑥, 𝑦)

.

Γ
𝐺𝑘(𝑥, 𝑦) (

𝜕𝑢𝑘

𝜕𝑥2
+ −

𝜕𝑢𝑘

𝜕𝑥2
−) (𝑦)𝑑𝑦  (3.40) 

But due to Lemma 3.10 Property (3) and since 𝑢𝑘 =

𝑢�̃� 𝑜𝑛 𝜕𝐷 and then we have, 

∫ 𝐺𝑘(𝑥, 𝑦)
.

𝜕𝐷
(
𝜕𝑢𝑘

𝜕𝑛
) (𝑦) − 𝐺𝑘(𝑥, 𝑦) (

𝜕𝑢𝑘

𝜕𝑛
) 𝑢𝑘(𝑦) =

0  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 𝑖𝑛 Ω+ , that is why we get 

(𝑥) = ∫ 𝐺𝑘(𝑥, 𝑦)
.

Γ
𝐺𝑘(𝑥, 𝑦) (

𝜕𝑢𝑘

𝜕𝑥2
+ −

𝜕𝑢𝑘

𝜕𝑥2
−) (𝑦)𝑑𝑦   

 (3.41) 

For all 𝑥 𝑖𝑛 Ω− 

Take 𝑥2 it is the derivative of  𝑥 𝑖𝑛 Ω+ approaching Γ  

Due to the normal derivatives of single layer potential, we 

find that 

(
𝜕𝑢𝑘
𝜕𝑥2

+) (𝑦) =
1

2
(
𝜕𝑢𝑘
𝜕𝑥2

+ −
𝜕𝑢𝑘
𝜕𝑥2

−) (𝑥)

− ∫𝐺𝑘(𝑥, 𝑦)
.

Γ

𝐺𝑘(𝑥, 𝑦) (
𝜕𝑢𝑘
𝜕𝑥2

+

−
𝜕𝑢𝑘
𝜕𝑥2

−) (𝑦)𝑑𝑦 

Observe that, for 𝑥  𝑎𝑛𝑑 𝑦 𝑜𝑛 Γ and hence completes the 

proof. 

3.12 – Theorem: 

The following estimates as 𝑘 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ𝑒𝑠 0+ ℎ𝑜𝑙𝑑𝑠 
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∫ (
𝜕𝑢𝑘

𝜕𝑥2
−)

.

Γ
~𝜋𝑘 (

𝐻1(𝑘)

𝐻0(𝑘)
)   

      (3.42) 

Consequently,  𝑅𝑒 ∫ (
𝜕𝑢𝑘

𝜕𝑥2
−)

.

Γ
 must be strictly positive for small 

values of  𝑘 < 0 

Proof: 

Set 𝑣 = 1 − 𝜑 in variational problem (Note the trace of 𝑣 is 

zero on Γ , as required in the space 𝐻0,Γ(Ω) to obtain 

−∫ ∇𝑢𝑘 .̃ ∇𝜑 −
.

Ω
∫ 𝑘2𝑢𝑘 .̃ (1 − 𝜑)
.

Ω
− ∫ 𝑇𝑘𝑢𝑘 .̃ (1 − 𝜑)

.

∂D
=

∫ (∆𝜑 + 𝑘2𝜑)
.

Ω
(1 − 𝜑)   

                                                                            (3.43) 

First observe that,  

∫ 𝑘2
.

Ω
𝜑(1 − 𝜑) = 𝑂(𝑘2) and due to the lemma (3,11)  

 ∫ 𝑘2𝑢�̃�
.

Ω
(1 − 𝜑) = 𝑂(𝑘2) and then we have to find that 

−∫ ∇𝑢𝑘 .̃ ∇𝜑
.

Ω
+ ∫ ∇𝜑

.

Ω
= ∫ 𝑇𝑘𝑢�̃� + 𝑂(𝑘

2)
.

∂D
   

  

 (3.44) 

Using Green’s Theorem, we get, 

2∫ (
𝜕𝑢𝑘

𝜕𝑥2
−)

.

Γ
= 2∫ (

𝜕𝑢𝑘

𝜕𝑥2
−)

.

Γ
𝜑 = ∫ ∇𝑢𝑘 .̃ ∇𝜑

.

Ω
+ ∫ ∆𝑢𝑘 .̃ 𝜑

.

Ω
  

  

 (3.45) 

Since in Ω, ∆𝑢�̃� = −∆ 𝜑 − 𝑘
2𝑢�̃� = 𝑘

2𝜑 and it yields 

2∫ (
𝜕𝑢�̃�

𝜕𝑥2
−)

.

Γ
= − ∫ 𝑇𝑘𝑢�̃�

.

∂D
+ 𝑂(𝑘2)  

  

 (3.46) 

But ∫ 𝑇𝑘𝑢�̃�
.

∂D
= −𝑘 (

𝐻1(𝑘)

𝐻0(𝑘)
) (2∅)𝑎0(𝑘) 𝑤ℎ𝑒𝑟𝑒  𝑎0 =

1

2𝜋
∫ 𝑢�̃�
.

∂D
 so that using again  that 𝑢�̃�is strongly convergent to 

(1 − 𝜑) 𝑖𝑛 𝐻1(Ω), 𝑎𝑛𝑑 𝑎𝑙𝑠𝑜 𝑎0(𝑘)𝑡𝑒𝑛𝑑𝑠 𝑡𝑜 1 𝑎𝑠 𝑘 ⟶ 0 

We claim that 

∫ 𝑇𝑘𝑢�̃�
.

∂D
~− 2𝜋𝑘 (

𝐻1(𝑘)

𝐻0(𝑘)
) (𝑘)   

     (3.47) 

𝑎𝑠 𝑘 ⟶ 0 . Again, going back to the definition of Hankel 

function it is easy to see that  

 𝑘 (
𝐻1(𝑘)

𝐻0(𝑘)
)~ − (𝑙𝑛,𝑘)−1 𝑎𝑠 𝑘 ⟶ 0, from this we conclude 

that 

2∫ (
𝜕𝑢𝑘

𝜕𝑥2
−)

.

Γ
~ − 2𝜋𝑘(𝑙𝑛,𝑘)−1   

 (3.48) 

So that we have 𝑅𝑒 ∫ (
𝜕𝑢𝑘

𝜕𝑥2
−)

.

Γ
must be strictly positive for all 

𝑘 > 1 as small enough/ 

Hence completes the proof of theorem. 

4. ASYMPTOTIC FOR HIGH WAVE NUMBER 

We provide in this section – 4; a derivation of an equivalent 

for  ∫ (
𝜕𝑢𝑘

𝜕𝑥2
−)

.

Γ
 𝑎𝑠 𝑘 ⟶ ∞ 𝑤ℎ𝑒𝑟𝑒  

𝑢𝑘 = 𝑢�̃� + 𝜑  𝑎𝑛𝑑  𝑢�̃� solve the variational problem. We will 

prove the following theorem 

 

 

4.1.  Theorem 

Let 𝑢�̃� it is a solution and set 𝑢𝑘 = 𝑢�̃� + 𝜑  , the following 

estimates hold as 𝑘 ⟶ ∞ we have 

∫ (
𝜕𝑢𝑘

𝜕𝑥2
−)

.

Γ
= −𝑖𝑘 + 𝑂 (𝑘

3

4)   

  (4.1) 

Before we will prove the theorem 4.1. we will develop some 

theory in the following manner” 

What is the asymptotic behavior of (
𝜕𝑢𝑘

𝜕𝑥2
−)  as the wave 

number 𝑘 ⟶ ∞? 

High frequency approximation for the wave equation is a vast 

subject which has been extensively studied over time. 

Historically, investigations have tried to explain how the laws 

of geometric optics relate to the wave equation at high 

frequency in an attempt to provide a sound foundation for 

Fresnel’s law, Kirchhoff may have  been the rest one to write 

specific equations  and asymptotic formulas for high 

frequency wave phenomena, however, his derivation was 

informal. More mathematically rigorous study of the behavior 

of solutions to the wave equation at high frequency requires 

the use of Fourier Integral Operators and Micro – Local 

Analysis. As far as we know this kind of work was pioneered 

by Majda Melrose and Tayler (2012). These authors were 

actually interested in the case of exterior of a bounded convex 

domain. So their results cannot be applied to our case since, 

has empty interior in ℝ2, We have instead to rely on recent 

ground breaking work by Hewett , Langdon,  and Chandler – 

Wilde, it pertains to either scattering in dimension – 2 by soft 

or hard line segments (/This is our study) or scattering in 

dimension – 3 by soft or hard open planner surfaces. The great 

achievement of those above authors work is that they were 

able to derive continuity coercivity bounds that explicitly 

depend on the wave number. 

Following the work by Hewett and Chandler – Wilde we 

introduce relevant function spaces and frequency depending 

norms. Let 𝑣 𝑜𝑛 ℝ 𝑎𝑛𝑑  𝑣 ̂its Fourier Transform. Let 𝑠 𝑜𝑛 ℝ, 

we say that 𝑣 𝑖𝑠 𝑖𝑛 𝐻𝑠(ℝ), if (∫ (1 + 𝜉2)𝑠
,

ℝ
| 𝑣 ̂(𝜉)2|𝑑𝜉)

1

2 ≤

∞ 

And then we define in 𝐻𝑠(ℝ) 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑘  is dependent norm 

so that we have 

‖𝑣‖𝐻𝑘
𝑠(ℝ) = (∫ (𝑘2 + 𝜉2)𝑠

.

ℝ
| 𝑣 ̂(𝜉)2𝑑𝜉|)

1

2   

                        (4.2) 

Note that, 𝐻1(ℝ) is included in 𝐻
1

2(ℝ), and more preciously  

‖𝑣‖
𝐻𝑘

1
2(ℝ)

≤ 𝑘−
1

2‖𝑣‖
𝐻𝑘

1
2(ℝ)

     

                       (4.3) 

For all 𝑣 𝑖𝑛 𝐻1(𝑘). Let us take an interval  𝐼 = (−
1

2
,
1

2
). 

 𝐻𝑠  ̂ is defined to be the closure of 𝐶𝑒
∞(𝐼) 

(The space of smooth functions, compactly supported in 𝐼). 

For the norm ‖𝑣‖
𝐻𝑘

1
2(ℝ)

, 𝐻𝑠(𝐼)  is defined to be the space of 
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restrictions to  𝐼 of elements in 𝐻𝑠(ℝ), we define on 𝐻𝑠(𝐼), 

the norm  

‖𝑣‖
𝐻𝑘

1
2(ℝ)

= inf {‖𝑣‖
𝐻𝑘

1
2(ℝ)

: 𝑣 ∈ ‖𝑣‖𝐻𝑘
𝑠(ℝ) 𝑎𝑛𝑑

𝑣

𝐼
= 𝑣} 

 

4.2. Hewett and Chandler – Wilde – Theorem (Without 

Proof) 

For any set 𝑠 𝑖𝑛 ℝ the operator  𝑆𝑘 defined by the following 

formula for smooth function 𝑣 𝑖𝑛 𝐼 then 

‖𝑆𝑘𝑣(𝑥1)‖ ≈ ∫
1

4
𝐻0(𝑘|𝑥1 − 𝑦1|)

.

Γ
𝑣(𝑦1)𝑑𝑦1, it can be 

extended to a combination of linear operator from 

 𝐻𝑠  ̂ (𝐼) 𝑡𝑜 𝐻𝑠+1(𝐼), Furthermore, 𝑆𝑘 is injective, 

𝑆𝑘
−1continuous and satisfies the estimate 

‖𝑆𝑘
−1𝑣‖

𝐻𝑘

1
2(𝐼)

≤ 2√2‖𝑣‖
𝐻𝑘

1
2(𝐼)

    

           (4.4) 

For all 𝑣 𝑖𝑛 𝐻
𝑘

1

2(𝐼) 

Let us emphasize one more time that although the 

continuously and coercivity properties of 𝑆𝑘 known for some 

time. Hewett and Chandler – Wilde’s great achievement was 

to derive the dependency of the coercivity bounds on the 

wave number 𝑘  𝑎𝑠 in estimate, the dependency =appears in 

the use of special norms ‖, ‖𝐻𝑘
𝑠(𝐼) 

4.3. An Informal Derivation of Estimation 

This informal derivation will be helpful, since it will give us 

idea of what the asymptotic behavior of 

for  ∫ (
𝜕𝑢𝑘

𝜕𝑥2
−)

.

Γ
 (0, 𝑦1) 𝑓𝑜𝑟 𝑦0 = 1 

Since 𝑓𝑘 satisfies the integral equals to 𝑆𝑘𝑓𝑘 =
1

2
  Or 

∫
1

4
𝐻0 (𝑘|𝑥1 − 𝑦1|𝑓𝑘(𝑦1))𝑑𝑦1 =

1

2

.

𝐼
;  𝑥1 ∈ 𝐼   

  

  (4.5) 

Multiply above equation by  −2𝑖𝑘 and integrate in 𝑥1  over 

 𝐼 , we get 

∫ ∫
𝑘

4

.

𝐼

.

𝐼
𝐻0 (𝑘|𝑥1 − 𝑦1|𝑓𝑘(𝑦1))𝑑𝑦1𝑑𝑥1 = −𝑖𝑘    

       (4.6) 

If possible, interchange order of integration in the left =hand 

side of above equation, then 

∫ ∫
𝑘

4

.

𝐼

.

𝐼

𝐻0 (𝑘|𝑥1 − 𝑦1|𝑑𝑥1𝑓𝑘(𝑦1))𝑑𝑦1 = −𝑖𝑘 

                                                                                       (4.7) 

Now, for every 𝑥1 𝑖𝑛 𝐼 , setting  𝑣 = 𝑘(𝑥1 − 𝑦1) and using the 

following (lemma – 4.1) we can find that 

lim
𝑘⟶∞

∫
𝑘

2

.

𝐼
𝐻0 (𝑘|𝑥1 − 𝑦1|𝑑𝑥1) = 1   

     (4.8) 

So that, we led to, believe that,  

∫ 𝑓𝑘
.

𝐼
(𝑦1)𝑦1~ − 𝑖𝑘 , it would set out to prove in future. 

4.4. Lemma – 4.1 

Write  𝑆𝑡𝑛, the Struve function of order  𝑛 and then the 

following condition holds for any 𝑡 > 0 

∫ 𝐻0(𝑧)
𝑡

0
𝑑𝑧 = 𝑡𝐻0(𝑡) +

𝜋

2
𝑡[𝑆𝑡0𝐻1(𝑡) − 𝑆𝑡1𝐻0(𝑡)] 

  (4.9) 

It follows that semi – convergent integral ∫ 𝐻0(𝑧)𝑑𝑧
∞

0
 is 

exactly equal in 1. 

Proof: 

Since the integral formula given the value ∫ 𝐻0(𝑧)𝑑𝑧
∞

0
 of the 

results from that formula combined with known asymptotic 

at infinity of Bessel and of Struve functions. One should 

consult for formula on Bessel Functions, and their 

derivatizations and we will get the results. 

4.5. Rigorous Derivation of Estimate 

The following estimate holds as 𝑘 as approaches infinity 

‖𝑆𝑘 (−𝑖𝑘 −
1

2
)‖

𝐻𝑘

1
2(𝐼)

= 𝑂 (𝑘
1

4)   

  (4.10) 

Proof: 

First, we start by recalling the above lemma (4.1) and noting 

that for 𝑥1 𝑖𝑛 𝐼 and then, 

𝑆𝑘(−𝑖𝑘)(𝑥1) −
1

2
= ∫

1

4

.

𝐼

𝐻0 (𝑘|𝑥1 − 𝑦1|𝑑𝑦1) −
1

2

= −∫
1

4
𝐻0(𝑣)

.

𝑘(
1
2
+𝑥1)

𝑑𝑣

− ∫
1

4
𝐻0(𝑣)

.

𝑘(
1
2
−𝑥1)

𝑑𝑣 

Now set 𝐺𝑘(𝑥1) = ∫
1

4
𝐻0(𝑣)

.

𝑘(
1

2
+𝑥1)

𝑑𝑣 −

∫
1

4
𝐻0(𝑣)

.

𝑘(
1

2
−𝑥1)

𝑑𝑣 and since 𝑡 ⟶ ∫ 𝐻0(𝑣)𝑑𝑣
∞

𝑡
 is 

continuous on (0,∞) and has limit zero at infinity, there is a 

positive 𝐶 such that 

|∫ 𝐻0(𝑣)𝑑𝑣
∞

𝑡
| ≤ 𝐶   

  (4.11) 

For  𝑖𝑛 (0,∞) . It is well known that  𝑣  approaches infinity. 

Now we have 

𝐻0(𝑣)𝑒
𝑖(𝑣−

1

4
)√

2𝜋

𝑣
+ 𝑂 (𝑣− 

3

2), so we also have the estimate 

|∫ 𝐻0(𝑣)𝑑𝑣
∞

𝑡
| = 𝑂 (𝑡− 

1

2)  𝑎𝑠 𝑡 ⟶∞  

  (4.12) 

Without loss of generality, we nay assume that 𝑘 > 4. If 

𝑥1 𝑖𝑠 𝑖𝑛 (−
1

2
+ 𝑘

1

2,
1

2
− 𝑘

1

2) and then 

𝑘 (
1

2
+ 𝑥1)  𝑎𝑛𝑑 𝑘 (

1

2
− 𝑥1) are greater than 𝑘

1

2, so that we 

have 

𝐺𝑘(𝑥1) = 𝑂 (𝑘
− 
1

4) and then we infer that 

|𝐺𝑘|
2 = ∫ |𝐺𝑘|

2.

(−
1

2
+𝑘

1
2,
1

2
−𝑘

1
2) 

+ ∫ |𝐺𝑘|
2.

(−
1

2
+𝑘

1
2,
1

2
−𝑘

1
2) 

=

𝑂 (𝑘− 
1

2)   

 (4.13) 

Next, note that, 𝐺𝑘
′ (𝑥1) = 𝑘𝐻0 (𝑘 (

1

2
+ 𝑥1) − 𝑘𝐻0𝑘 (

1

2
−

𝑥1)) 
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Using substitution, we find that  

∫|𝐺𝑘
′ (𝑥1)|

2 ≤ 4𝑘 (∫𝐻0(𝑣)
.

0

)

2

𝑑𝑣
.

𝐼

 

Given that asymptotic at infinity of 𝐻0 we infer that 

∫ |𝐺𝑘
′ (𝑥1)|

2.

𝐼
= 𝑂(𝑘𝑙𝑛𝑘) 𝑎𝑠 𝑘 ⟶ ∞    

                                                                             (4.14) 

Now evaluate a few Sobolov norms of  𝐺𝑘.We observe that  

𝐺𝑘 (−
1

2
) = 𝐺𝑘 (

1

2
) = ∫ 𝐻0(𝑣)

∞

0
𝑑𝑣 + ∫ 𝐻0(𝑣)

∞

𝑘
𝑑𝑣 

Uniformly bounded in  𝑘 

4.6. Proof of Theorem – 4.1. 

Case – 1: For  𝐶1, 𝐶2, 𝐶3, 𝐶4, > 0 

In this case – 1, we cover the case where the constants 

𝐶1, 𝐶2, 𝐶3, 𝐶4 are all positive, which was assumed in this 

theorem 4.1. We explained how the function denied relates to  

𝑢𝑘 = �̃�𝑘 + 𝜑 And solve and it is extended to ℝ2 as indicated 

by lemma – 3.10 and then 𝑢𝑘 = 𝜑 𝑖𝑛 ℝ
2 

Recalling the definition of the function  𝐹 and it expressed as 

𝐹(𝑘) = 𝑞(𝑘2) + 𝑝(𝑘2)𝑅𝑒 (∫ (
𝜕𝑢𝑘

𝜕𝑥2
−)

.

Γ
)  

  (4.15) 

We know that the lemma – 3.11 that 𝐹 is analytic in (0,∞), 

again recalling the definition of 𝑝 𝑎𝑛𝑑 𝑞 and using the two 

estimates and then we get  

𝐹(𝑘)~ 𝐶2𝜋(ln 𝑘)
−1  𝑓𝑜𝑟 𝑘 ⟶ 0+   

  (4.16) 

Again, recalling the two estimates, we claim that 

𝐹(𝑘)~ 𝐶3𝑘
4  𝑓𝑜𝑟 𝑘 ⟶ ∞    

  (4.17) 

It follows that, by the two estimates there is a positive  𝛼  such 

that, 𝐹(𝑘) < 0 if 𝑘 ∈ (0,∞) and also, we infer that then we 

conclude that  lim
 𝑘⟶∞

𝐹(𝑘) = ∞, since 𝐹 is continuous in 

(0,∞), we conclude that 𝐹 must achieve that value zero in 

that interval. We claim that the zeros of 𝐹  are isolated since 

𝐹 is an analytic function and these zeros occur in some 

interval [𝐴, 𝐵] where 𝐴, 𝐵 are two positive constants. In 

particular the equation  𝐹(𝑘) = 0 has at most a finite number 

of solutions. 

 

Case – 2: Use of estimate in the case where 𝐶3 < 0 

We must claim that for any positive values 𝐶1, 𝐶2, 𝐶4  there 

exists a negative value of 𝐶3 , then the equation 𝐹(𝑘) = 0 has 

no solution. According to estimate there exists a positive 

number 𝑘 𝑖𝑛 (0,∞) such that 

−
1

2
𝜋(ln 𝑘)−1 ≤  𝑅𝑒 (∫ (

𝜕𝑢𝑘

𝜕𝑥2
−)

.

Γ
) ≤

3

2
𝜋(ln 𝑘)−1   

  (4.18) 

Consequently for 𝑘 𝑖𝑛 (0,∞) 

𝐹(𝑘) ≤ 𝐶4𝑘
2 + 𝐶1 (−

3

2
𝜋(ln 𝑘)−1) + 𝐶2

1

2
𝜋(ln 𝑘)−1  

  

  (4.19) 

So that, if 𝛼 is small enough,𝐹(𝑘) <

0, 𝑎𝑛𝑑 𝑖𝑓 𝑘  𝑖𝑠 𝑖𝑛 [0,∞), there is negative 𝐴1 and a positive 

𝐴2 for all 𝑘 𝑖𝑛 (0,∞) such that 

𝐴1𝑘
3

4 ≤  𝑅𝑒 (∫ (
𝜕𝑢𝑘

𝜕𝑥2
−)

.

Γ
) ≤ 𝐴2𝑘

3

4   

  (4.20) 

So that, for all 𝑘  𝑖𝑠 𝑖𝑛 [𝛼,∞) and then we have 

𝐹(𝑘) ⟶ 𝐶3𝑘
4 + 𝐶4𝑘

2 + 𝐶1𝐴2𝑘
 (2+

3

4
) − 𝐶1𝐴1𝑘

3

4   

  

        (4.21) 

So that, if we choose 𝐶3 less that that some negative constant 

𝐹(𝑘) < 0 for all  𝑘 𝑖𝑛 [0,∞). We conclude that for that 

choice of 𝐶3 for all  𝑘, so that the equation 𝐹(𝑘) = 0 has no 

solution in (0,∞). 

Next, we show that the following claim for any value of the 

positive constants 𝐶1, 𝐶2 and any negative constant then the 

equation 𝐹(𝑘) = 0 has at least one solution. We may assume 

that, 𝛼 defined as above is less than  1, for all 𝑘 in (0,∞), we 

get 

𝐹(𝑘) ≥ 𝐶3𝑘
4 + 𝐶4𝑘

2 + 𝐶1𝐴2𝑘
 (2+

3

4
) − 𝐶1𝐴1𝑘

3

4   

  (4.22) 

Thus,  𝐹(𝑘) < 0 for any 𝐶4 greater than some constant. 

As𝐶3 < 0, we have that lim
𝑘⟶∞

𝐶3 = −∞/ We conclude that the 

equation 𝐹(𝑘) = 0 has at least one solution. 

Hence completes the proof of Theorem. 

 

5. CONCLUSION AND PERSPECTIVES 

In this article the well – pawedness of a set of equations 

modeling City – Effect was powerful. To the best of our 

knowledge, up to now, there was no formal proof of existence 

of frequency between earth and vibration of Tall Building. 

Recalling that our research pertains exclusively to Ant – 

Plane shearing. It will be important to generalize our results 

to fully three – dimensional Elastic Vibration. We believe that 

only minor modification to our present argument, we ensured 

that the existence of frequency between the Earth and Tall 

Building 
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