Marketing Mobile Banking Apps to Gen-Z: A Theory UTAUT 2
Downloads
This study attempts to determine how use behavior in mobile banking for Gen-Z is influenced by social influence, perceived utility, perceived ease of use, and enabling factors. This impact is mediated by behavioral intention. This study employed a quantitative methodology that disseminated questionnaires created using Google Form. SPSS version 26 and SmartPLS version 3.0 were the tools used to process the data in this investigation. 288 Gen-Z citizens of Batam City served as the study's sample population. The study's findings suggest a substantial correlation between behavioral intention and usage behavior and perceived ease of use. A strong correlation exists between behavioral intention and perceived usefulness, but not between perceived usefulness and usage behavior. There is a positive correlation between behavioral intention and social influence, but not between use behavior and social influence. However, there is no substantial correlation between using behavior and facilitating situations and behavioral intention. There is a strong correlation between use behavior and behavioral intention. Between perceived usefulness and enabling conditions on use behavior, behavioral intention acts as a mediating factor. Because of social influence, perceived utility, convenience of use, and other considerations, people who have a high intention to use the mobile banking application are more likely to do so frequently and actively.
Abbad, M. M. M. (2021). Using the UTAUT model to understand students’ usage of e-learning systems in developing countries. Education and Information Technologies, 26(6), 7205–7224. https://doi.org/10.1007/s10639-021-10573-5
Al-Adwan, A. S., Li, N., Al-Adwan, A., Abbasi, G. A., Albelbisi, N. A., & Habibi, A. (2023). Extending the Technology Acceptance Model (TAM) to Predict University Students’ Intentions to Use Metaverse-Based Learning Platforms. Education and Information Technologies, 28(11), 15381–15413. https://doi.org/10.1007/s10639-023-11816-3
Al-Riyami, T., Al-Maskari, A., & Al-Ghnimi, S. (2023). Faculties Behavioural Intention Toward the Use of the Fourth Industrial Revolution Related-Technologies in Higher Education Institutions. International Journal of Emerging Technologies in Learning, 18(7), 159–177.
https://doi.org/10.3991/ijet.v18i07.37051
Alqaryouti, O., Siyam, N., Alkashri, Z., & Shaalan, K. (2020). Cryptocurrency Usage Impact on Perceived Benefits and Users’ Behaviour BT - Information Systems (M. Themistocleous & M. Papadaki (eds.); pp. 123–136). Springer International Publishing.
Bailey, D. R., Almusharraf, N., & Almusharraf, A. (2022). Video conferencing in the e-learning context: explaining learning outcome with the technology acceptance model. Education and Information Technologies, 27(6), 7679–7698. https://doi.org/10.1007/s10639-022-10949-1
Bereket, T., & Hwang, G.-H. (2020). Determinants of Behavioral Intention and Usage of Mobile Money Services in Ethiopia 에티오피아 모바일화폐 서비스의 채택의향과 사용행태 결정요인. Journal of Digital Convergence, 18(2), 23–35.
Che Nawi, N., Mamun, A. Al, Hayat, N., & Seduram, L. (2022). Promoting Sustainable Financial Services Through the Adoption of eWallet Among Malaysian Working Adults. SAGE Open, 12(1). https://doi.org/10.1177/21582440211071107
Chin, W. W. (1998). The Partial Least Squares Approach for Structural Equation Modelling (G. A. Marcoulides (ed.)).
Choi, W., Chang, S. H., Yang, Y. S., Jung, S., Lee, S. J., Chun, J. W., Kim, D. J., Lee, W., & Choi, I. Y. (2022). Study of the factors influencing the use of MyData platform based on personal health record data sharing system. BMC Medical Informatics and Decision Making, 22(1), 1–13.
https://doi.org/10.1186/s12911-022-01929-z
Dewi Yuliana, P., & Aprianingsih, A. (2022). Factors involved in adopting mobile banking for sharia banking sector using UTAUT 2. Peer-Reviewed Article Jurnal Keuangan Dan Perbankan, 26(1), 2443–2687. https://doi.org/10.26905/jkdp.v26i1.6858
Erjavec, J., & Manfreda, A. (2022). Online shopping adoption during COVID-19 and social isolation: Extending the UTAUT model with herd behavior. Journal of Retailing and Consumer Services, 65(July 2021), 102867.
https://doi.org/10.1016/j.jretconser.2021.102867
Ferghyna, F., Rachmadi, A., & Herlambang, A. D. (2020). Pengaruh Facilitating Conditions dan Behavioral Intention terhadap Use Behavior pada Pengguna Aplikasi BNI Mobile Banking. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 4(9), 3201–3208.
Fornell, C., & Larcker, D. F. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research, 18(1), 39–50. https://doi.org/10.2307/3151312
Ghozali, I. (2021). Partial Least Squares: Konsep, Teknik dan Aplikasi Menggunakan Program SmartPLS 3.2.9 untuk Penelitian Empiris. Fakultas Ekonomika dan Bisnis Universitas Diponegoro.
Gupta, M., Taneja, S., Sharma, V., Singh, A., Rupeika-Apoga, R., & Jangir, K. (2023). Does Previous Experience with the Unified Payments Interface (UPI) Affect the Usage of Central Bank Digital Currency (CBDC)? Journal of Risk and Financial Management, 16(6).
https://doi.org/10.3390/jrfm16060286
Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2–24. https://doi.org/10.1108/EBR-11-2018-0203
Hair, J. F., Sarstedt, M., Hopkins, L., & Kuppelwieser, V. G. (2014). Partial least squares structural equation modeling (PLS-SEM): An emerging tool in business research. European Business Review, 26(2), 106–121. https://doi.org/10.1108/EBR-10-2013-0128
Hasan, G. (2020). Faktor-faktor yang Mempengaruhi Masyarakat untuk Menggunakan Mobile Payment pada Online Shop di Batam. Journal of Sustainable Business Hub, 1(1), 1–11.
Hunde, M. K., Demsash, A. W., & Walle, A. D. (2023). Behavioral intention to use e-learning and its associated factors among health science students in Mettu university, southwest Ethiopia: Using modified UTAUT model. Informatics in Medicine Unlocked, 36(December 2022), 101154.
https://doi.org/10.1016/j.imu.2022.101154
Idilbi, M., & Abu-Shanab, E. A. (2022). Critical Success Factors for eRP Implementation: Two directions Focusing on employee Perceptions in Qatar. International Journal of Technology and Human Interaction, 18(1), 1–22. https://doi.org/10.4018/IJTHI.297613
Isma, R. A., Hudayah, S., & Indriastuti, H. (2021). The Influence of Perceived Usefulness, Perceived Ease of Use, and Perceived Risk on Purchase Interest and Use Behavior Through Bukalapak Application in Samarinda. International Journal of Economics, Business and Accounting Research (IJEBAR), 5(3), 1247–1258. https://jurnal.stie-aas.ac.id/index.php/IJEBAR
Jadil, Y., Rana, N. P., & Dwivedi, Y. K. (2021). A meta-analysis of the UTAUT model in the mobile banking literature: The moderating role of sample size and culture. Journal of Business Research, 132, 354–372. https://doi.org/10.1016/j.jbusres.2021.04.052
Jariyapan, P., Mattayaphutron, S., Gillani, S. N., & Shafique, O. (2022). Factors Influencing the Behavioural Intention to Use Cryptocurrency in Emerging Economies During the COVID-19 Pandemic: Based on Technology Acceptance Model 3, Perceived Risk, and Financial Literacy. Frontiers in Psychology, 12(February). https://doi.org/10.3389/fpsyg.2021.814087
Kaur, S., & Arora, S. (2020). Role of perceived risk in online banking and its impact on behavioral intention: trust as a moderator. Journal of Asia Business Studies, ahead-of-p. https://doi.org/10.1108/JABS-08-2019-0252
Lavidas, K., Papadakis, S., Filippidi, A., Karachristos, C., Misirli, A., Tzavara, A., Komis, V., & Karacapilidis, N. (2023). Predicting the Behavioral Intention of Greek University Faculty Members to Use Moodle. Sustainability (Switzerland), 15(7), 1–12. https://doi.org/10.3390/su15076290
Limantara, N., Edbert, I. S., Widjaya, P. J., & Adina, M. (2021). User acceptance analysis on intacs ERP distribution application using technology acceptance model. ICIC Express Letters, 15(4), 349–355. https://doi.org/10.24507/icicel.15.04.349
Linge, A. A., Chaudhari, T., Kakde, B. B., & Singh, M. (2023). Analysis of Factors Affecting Use Behavior towards Mobile Payment Apps: A SEM Approach. Human Behavior and Emerging Technologies, 2023. https://doi.org/10.1155/2023/3327994
Liu, C. H., Chen, Y. T., Kittikowit, S., Hongsuchon, T., & Chen, Y. J. (2022). Using Unified Theory of Acceptance and Use of Technology to Evaluate the Impact of a Mobile Payment App on the Shopping Intention and Usage Behavior of Middle-Aged Customers. Frontiers in Psychology, 13(March 2022), 1–11. https://doi.org/10.3389/fpsyg.2022.830842
Ma, J., Wang, P., Li, B., Wang, T., Pang, X. S., & Wang, D. (n.d.). Exploring User Adoption of ChatGPT: A Technology Acceptance Model Perspective. International Journal of Human–Computer Interaction, 1–15. https://doi.org/10.1080/10447318.2024.2314358
Marpaung, F. K., Dewi, R. S., Grace, E., Sudirman, A., & Sugiat, M. (2021). Behavioral stimulus for using bank Mestika mobile banking services: UTAUT2 model perspective. Golden Ratio of Marketing and Applied Psychology of Business, 1(2), 61–72. https://doi.org/10.52970/grmapb.v1i2.68
Muangmee, C., Kot, S., Meekaewkunchorn, N., Kassakorn, N., & Khalid, B. (2021). Factors determining the behavioral intention of using food delivery apps during covid-19 pandemics. Journal of Theoretical and Applied Electronic Commerce Research, 16(5), 1297–1310.
https://doi.org/10.3390/jtaer16050073
Nur, T., & Gosal, G. A. (2021). Mobile payment usage in online shopping among gen z in the JABODETABEK area: META-UTAUT approach. 2021 International Conference on Information Management and Technology (ICIMTech), 1, 464–469. ttps://doi.org/10.1109/ICIMTech53080.2021.9535003
Ong, A. K. S., German, J. D., Redi, A. A. N. P., Cordova, L. N. Z., Longanilla, F. A. B., Caprecho, N. L., & Javier, R. A. V. (2023). Antecedents of Behavioral Intentions for Purchasing Hybrid Cars Using Sustainability Theory of Planned Behavior Integrated with UTAUT2. Sustainability (Switzerland), 15(9). https://doi.org/10.3390/su15097657
Pham, A. H. T., Pham, D. X., Thalassinos, E. I., & Le, A. H. (2022). The Application of Sem–Neural Network Method to Determine the Factors Affecting the Intention to Use Online Banking Services in Vietnam. Sustainability (Switzerland), 14(10). https://doi.org/10.3390/su14106021
Popova, Y., & Zagulova, D. (2022). UTAUT Model for Smart City Concept Implementation: Use of Web Applications by Residents for Everyday Operations. Informatics, 9(1), 1–19. https://doi.org/10.3390/informatics9010027
Pratama, R. R. D., & Renny, R. (2022). The role of behavioral intentions to use mobile banking: application of the utaut2 method with security, trust and risk factors. Dinasti International Journal, 3(4), 728–741. https://doi.org/10.31933/dijms.v3i4.1141
Purwanto, E., & Loisa, J. (2020). The Intention and Use Behaviour of the Mobile Banking System in indonesia: UTAUT Model. Technology Reports of Kansai University , 62(July), 2757-2767.
Rahmaningtyas, W., Mulyono, K. B., Widhiastuti, R., Fidhyallah, N. F., & Faslah, R. (2020). Application of UTAUT (unified theory of acceptance and use of technology) to understand the acceptance and use of the e-learning system. International Journal of Advanced Science and Technology, 29(4), 5051–5060.
Ricardianto, P., Soekirman, A., Pribadi, O. S., Atmaja, D. B., Suryobuwono, A. A., Ikawati, I., Gutomo, T., Murtiwidayanti, S. Y., Ca-Hyono, S. A. T., & Endri, E. (2023). Perceived of ease of use and usefulness: Empirical evidence of behavioral intention to use QR code technology on Indonesian commuter lines. International Journal of Data and Network Science, 7(4), 1815–1828. https://doi.org/10.5267/j.ijdns.2023.7.010
Saputra, M. E., Sumiati, S., & Yuniarinto, A. (2023). The effect of customer experience on customer loyalty mediated by customer satisfaction and customer trust. Journal of Economics and Business Letters, 3(3), 27–37. https://doi.org/10.55942/jebl.v3i3.205
Shafly, N. A. (2020). Penerapan Model Utaut2 Untuk Menjelaskan Behavioral Intention Dan Use Behavior Penggunaan Mobile Banking Di Kota Malang. Journal of Chemical Information and Modeling, 53(9), 1689–1699.
Shams, G., Rehman, M. A., Samad, S., & Oikarinen, E.-L. (2020). Exploring customer’s mobile banking experiences and expectations among generations X, Y and Z. Journal of Financial Services Marketing, 25(1), 1–13. https://doi.org/10.1057/s41264-020-00071-z
Siagian, H., Tarigan, Z. J. H., Basana, S. R., & Basuki, R. (2022). The effect of perceived security, perceived ease of use, and perceived usefulness on consumer behavioral intention through trust in digital payment platform. International Journal of Data and Network Science, 6(3), 861–874. https://doi.org/10.5267/j.ijdns.2022.2.010
Sumardi, D. H., & Andreani, F. (2021). Pengaruh perceived usefulness dan perceived ease of use terhadap usage behavior melalui intention to use pada konsumen online shop sayurbox di Surabaya. Agora, 9(1).
Sundjaja, A. M., Shukurnianto, D., Rulvi, A. P., & Putra, R. H. (2021). Factors Affecting Buyer Satisfaction of Coffee Beans at the Online Marketplace in Indonesia. 2021 International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS, 155–161. https://doi.org/10.1109/ICIMCIS53775.2021.9699202
Tao, D., Chen, Z., Qin, M., & Cheng, M. (2023). Modeling Consumer Acceptance and Usage Behaviors of m-Health: An Integrated Model of Self-Determination Theory, Task–Technology Fit, and the Technology Acceptance Model. Healthcare (Switzerland), 11(11).
https://doi.org/10.3390/healthcare11111550
Tawafak, R. M., Al-Rahmi, W. M., Almogren, A. S., Al Adwan, M. N., Safori, A., Attar, R. W., & Habes, M. (2023). Analysis of E-learning system use using combined TAM and ECT factors. Sustainability, 15(14), 11100.
Thusi, P., & Maduku, D. K. (2020). South African millennials’ acceptance and use of retail mobile banking apps: An integrated perspective. Computers in Human Behavior, 111(July 2019). https://doi.org/10.1016/j.chb.2020.106405
Vinnikova, A., Lu, L., Wei, J., Fang, G., & Yan, J. (2020). The use of smartphone fitness applications: The role of self-efficacy and self-regulation. International Journal of Environmental Research and Public Health, 17(20), 1–16. https://doi.org/10.3390/ijerph17207639
Wang, C., Ahmad, S. F., Bani Ahmad Ayassrah, A. Y. A., Awwad, E. M., Irshad, M., Ali, Y. A., Al-Razgan, M., Khan, Y., & Han, H. (2023). An empirical evaluation of technology acceptance model for Artificial Intelligence in E-commerce. Heliyon, 9(8), e18349.
https://doi.org/10.1016/j.heliyon.2023.e18349
Warsono, H., Yuwono, T., & Putranti, I. R. (2023). Analyzing technology acceptance model for collaborative governance in public administration: Empirical evidence of digital governance and perceived ease of use. International Journal of Data and Network Science, 7(1), 41–48. https://doi.org/10.5267/j.ijdns.2022.12.008
Yang, M., Al Mamun, A., Mohiuddin, M., Nawi, N. C., & Zainol, N. R. (2021). Cashless transactions: A study on intention and adoption of e-wallets. Sustainability (Switzerland), 13(2), 1–18. https://doi.org/10.3390/su13020831
Yuan, Z., Liu, J., Deng, X., Ding, T., & Wijaya, T. T. (2023). Facilitating Conditions as the Biggest Factor Influencing Elementary School Teachers’ Usage Behavior of Dynamic Mathematics Software in China. Mathematics, 11(6). https://doi.org/10.3390/math11061536
Zhao, Y., & Pan, Y. H. (2023). A Study of the Impact of Cultural Characteristics on Consumers’ Behavioral Intention for Mobile Payments: A Comparison between China and Korea. Sustainability (Switzerland), 15(8). https://doi.org/10.3390/su15086956