

Elegant labeling of some graphs and their line graphs

Vijayalaxmi .Shigehalli¹, Chidanand .A.Masarguppi²

¹Professor, Dept of Mathematics, Ranichannmma University, Vidyasangam, Belgavi, Karnataka India ²Research scholar, Dept of Mathematics, Ranichannmma University, Vidyasangam, Belgavi, Karnataka, India

Abstract: An elegant labeling f of graph G with 'q' edges an injective function from the vertices of G to the set $\{0, 1, 2, \dots, q\}$ such that when each edge (e = xy) is assigned the label $\{(f(x) + f(y)) \mod(q + 1)\}$ the resulting edge labels are distinct and non zero. In this paper it is shown to be certain families of line graphs of elegant graphs are elegant graphs. Key words: Path graph, P_m^2 comb graph, $H_{nm}B_{nm}$.

1.INTRODUCTION:

We consider all graphs are finite, simple and undirected. The graph G has 'V' vertices and 'E' edges. A graph labeling is an assignment fintegers to the vertices or edges or both subject to certain condition. We refer to survey on graph labeling by Gallian ^[5]. An elegant labelingwas introduced by Chang, Hsu and Rogers in 1981 ^[2] have established the elegantness of C_n and P_n . Balakrishnan ,Selvam and Yengnanaryan ^[9] have shown that the H_{nn} , B_{nn} are elegant if n is even. Recently V. Laxmi, Aljas Gomathi, N murugan and A.Nagarajan ^[10] have shown that the P_n^2 , P_nK_1 , are elegant Graphs. The definition and other information's which are used for present investigation are given.

2. Definitions:

Definition 2.1: Elegant graph : An elegant labeling f of graph G with 'q' edges is an injective function from the vertices of G to the set $\{0, 1, 2, \dots, q\}$ such that when each edge (e = xy) is assigned the label $\{(f(x) + f(y)) \mod(q + 1))\}$ the edge labels are distinct and non zero, the resulting graph is called an elegant graph.

Definition 2.2: $H_{n,n}$: The graph with vertex set V ($H_{n,n}$) = { $v_1, v_2, v_3, \dots v_n$; $u_1, u_2, \dots u_n$ } and edge set E ($H_{n,n}$) = { $v_i u_i; 1 \le i \le n, n-i+1 \le j \le n$ }.[9]

Definition 2.3: P_n^2 : The graph P_n^2 is a graph with vertex set V (P_n^2) = { u_i ; $1 \le i \le n$ } and E(P_n^2) = { $u_i u_{i+1}$; $1 \le i \le n-1$ } U { $u_i u_{i+2}$; $1 \le i \le n-2$ }.[10]

Chacterstics of labeling:

- > The vertex labeling L(G) chosen from the integers set $\{0,1,2,3,\dots,q\}$
- > Label the vertices in clockwise/anticlockwise/randomly in an increasing order.
- > It should satisfy $f = (xy) = \{ (f(x) + f(y)) \mod(q+1) \}$.
- > The condition holds good for few L(G) and it can't be generalized.
- \blacktriangleright L(G) has many edges and enough vertices.

3.MAIN RESULTS:

Theorem 3.1: The line graph of $(P_{n}^2 - e)$ is an elegant graph if $n \equiv 1 \pmod{2}$, $n \ge 3$ and (e = n-4). **Proof:**Let $G = (P_n^2)$ be a graph with 'p' vertices and 'q' edges and it's line graph [L (P_n^2)] {u₁,u₂,u₃,------

 $u_n; v_1, v_2, v_3, v_4$ -----v_n} be the vertices and the edge set $be\{e_1, e_2, e_3, ----e_n\}$.

We define the labeling function $f:V(G) \rightarrow \{0,1,2,3,\dots,q\}$ as follows.

||Volume||2||Issue||08||Pages-571-578||August-2016|| ISSN (e): 2394-6709 www.rajournals.in

$$\begin{split} & \underbrace{f}_{k}(u_{1}) = 0 \\ & \underbrace{f}_{k}(u_{2}) = 1 \\ & \underbrace{f}_{k}(u_{2i+1}) = 5i \quad \text{for } 1 \leq i \leq \left(\frac{q-p}{2}\right) \\ & \underbrace{f}_{k}(u_{2i+2}) = 5i+1 \quad \text{for } 1 \leq i \leq \left(\frac{q-p}{2}\right) \\ & \underbrace{f}_{k}(v_{1}) = 2 \\ & \underbrace{f}_{k}(v_{2i}) = 4i+j \quad \text{for } 1 \leq i \leq \left(\frac{q-p}{2}\right) \text{ and } 0 \leq j \leq \left(\frac{q-p}{2}\right) \\ & \underbrace{f}_{k}(v_{2i+1}) = 7i-j \quad \text{for } 1 \leq i \leq \left(\frac{q-p}{2}\right) \text{ and } j = 0, 2, 4, \dots \dots (n-5) \end{split}$$

The above defined labeling pattern easy to verify that all the vertex labels are different values and we get edge label in the form { 1, 2, 3,----- q} non – zerointegers and no edge label is repeated. Hence $L(P_n^2 - e)$ is a elegantlabeling graph.

Example.L(P_5^2) is a elegant labeling graph as shown in fig 1 n=5 e = n - 4.

e=1 (one edge deleted)

fig 1.

Theorem 3.2: The line graph of $(P_n^2 - e)$ is an elegant graph if $n \equiv 0 \pmod{2}$, $n \ge 4$ and (e = n-4). **Proof:** Let $G = (P_n^2)$ be a graph with 'p' vertices and 'q' edges and it's line graph $[L(P_n^2)]$ { $v_1, v_2, v_3, v_4 - \cdots + v_n; u_1, u_2, u_3, - \cdots + u_n$ } be the vertices and edge set $\{e_1, e_2, e_3, - \cdots + e_n\}$. We define the labeling function $f: V(G) \rightarrow \{0, 1, 2, 3, - \cdots + e_n\}$ as follows.

Vijayalaxmi .Shigehalli, RAJAR Volume 2 Issue 08 August 2016

||Volume||2||Issue||08||Pages-571-578||August-2016|| ISSN (e): 2394-6709 www.rajournals.in

$$f(v_{1+2i}) = 5i \quad \text{for } 0 \le i \le \left(\frac{n}{2} - 1\right)$$

$$f(v_{2+2i}) = 3+5i \quad \text{for } 0 \le i \le \left(\frac{n}{2} - 2\right)$$

$$f(u_{1+2i}) = 5i +1 \quad \text{for } 0 \le i \le \left(\frac{n}{2} - 2\right)$$

$$f(u_{2+2i}) = 2+5i \quad \text{for } 0 \le i \le \left(\frac{n}{2} - 2\right)$$

The above defined labeling pattern easy to verify that all the vertex labels are different values and we get edge label in the form { 1, 2, 3,----- q} non – zero integers and no edge label is repeated. Hence $L(P_{n-}^2 e)$ is a elegant labeling graph.

Example.L(P_6^2) is a elegant labeling graph as shown in fig 2n=6 e = n - 4.

Theorem 3.3: The line graph of $(P_n \mathbf{k}_1)$ is an elegant graph if $n \le 5$ **Proof:**Let $G = (P_n K_1)$ be a comb graph with 'V' vertices and 'E' edges and it's line graph $[L(P_n \mathbf{k}_1)]\{x_0, x_1, x_2, x_3 - \dots x_n; y_1, y_2, y_3, \dots y_n\}$ be the vertices and edge set $\{e_1, e_2, e_3, \dots e_n\}$. We define the labeling function $f: V(G) \rightarrow \{0, 1, 2, 3, \dots, q\}$ as follows. <u>Case 1:n=2</u> $f(x_1) = 0$

- $f(y_1) = 1$
- $f(y_2) = 2$

||Volume||2||Issue||08||Pages-571-578||August-2016|| ISSN (e): 2394-6709 www.rajournals.in

Case 2 :n=3

 $f(x_{i}) = i \text{ for } 0 \le i \le n - 2$ $f(y_{i}) = i+1 \text{ for } 1 \le i \le n$ **<u>Case 3:n=4</u>** $f(x_{1+2i}) = 5i+1 \text{ for } i=0,1$ $f(x_{2}) = 2$

 $f(y_{1+2i}) = 5i$ for i=0,1

f (y_{2+2i}) = 3i+4 for i=0,1

Case 4:n=5

 $f(x_i) = i \text{ for } 0 \le i \le n -2$

 $\underbrace{f}_{m}(y_{1+2i}) = (n-1) + i(i+1) + i \text{ for } 0 \le i \le \left(\frac{n-1}{2}\right)$

f (y_{2i}) = (n-1) + 2i for i=1,2

The vertex labeling pattern defined above covers all the vertices with different values and we get edge label in the form $\{1, 2, 3, \dots, q\}$ non – zero +ve integers and no edge label repeated. Hence L(P_nK₁) is \bullet elegant labeling graph.

Example.L (P_5K) is a elegant labeling graph as shown in fig 3

Theorem 3.4: The line graph of ($H_{n\,n})$ is a elegant graph if $\,n\leq 3$.

Proof: Let G be a(H_{nn}) graph with 'p' vertices and 'q' edges and it's line graph L(H_{nn}) { v_1 , v_2 , v_3 , v_4 ------ v_n }vertices and edge set { e_1 , e_2 , ----- e_n }. We define the labeling function f : V (G) \rightarrow { 0,1, 2-----n - 1 } as follows

Case 1: n=2

 $f(v_{1}) = 0$ $f(v_{2}) = 1$ $f(v_{3}) = 2$ **<u>Case 2:n=3</u>** $f(v_{1}) = 6$ $f(v_{2}) = 0$ $f(v_{2+i}) = i \text{ for } i=1,2,3,4$

such that the vertex labels are different numbers and we get edge label in the form $\{1, 2, 3, \dots, q\}$ non – zero integers and no edge label is repeated. Hence L(H_{nn}) is an elegant labeling graph.

Example.L(H₃₃) is a elegant labeling graph as shown in fig 4

Theorem 3.5: The line graph of P_n is an elegant graph if $n \equiv 0 \pmod{2}$. **Proof:** Let P_n be a path graph with a vertex set as $\{v_1, v_2, v_3, v_4 - \cdots + v_n\}, \{e_1, e_2, \cdots + e_{n-1}\}$ be the edge and it's line graph $L(P_n)$.has 'P'vertices and 'P -1'edges.

We define the labeling function $f: V(G) \rightarrow \{0, 1, 2-----q\}$ as follows

$$\underbrace{\mathbf{f}(\mathbf{u}_i) = \left(\frac{\mathbf{p} - 1}{2} + i\right)}_{2} \mod (\mathbf{q} + 1) \quad \text{for } 1 \le i \le \mathbf{P}$$

The vertex labeling pattern defined above covers all the vertices with different numbers.Label Vertices from right to left side of the path and weget edge label in the form of $\{1, 2, 3, ----- q\}$, non – zero integers and no edge label is repeated.Hence $L(P_n)$ is a elegant labeling graph. **Example.** $L(P_6)$ is a elegant labeling graph as shown in fig 5

Theorem 3.6: The line graph of (\mathbf{B}_{nn}) is a elegant graph if n=2

Proof: Let G be a bistargraph with v_1 , v_2 , v_3 , v_4 ----- v_n be the vertices and edges e_1 , e_2 ,----- $e_{n 1}$ it's line graph L(B_{nn}).has 'V'vertices and 'E'edges.We define the labeling function $f: V(G) \rightarrow \{0, 1, 2$ ------q $\}$ as follows

 $f(x_i) = 0$

f (v $_{i+1}$) = 3i+1 for i=0,1

f (u_{i+1}) = 3i+3 for i=0,1

The above defined labeling pattern we can label the vertices with different values and weget edge label in the form{ 1, 2, 3,----- q} non – zero integers and no edge label is repeated. Hence $L(B_{nn})$ is a elegant labeling graph.

Vijayalaxmi .Shigehalli, RAJAR Volume 2 Issue 08 August 2016

||Volume||2||Issue||08||Pages-571-578||August-2016|| ISSN (e): 2394-6709 www.rajournals.in

CONCLUSION:

In this paper we have shown that line graph of P_n^2 , Comb graph, Path graph, H_{nn}, B_{nn} are elegant graphs it can also verified for some graphs.

REFERENCE:

- 1) A.Elumalai and G.Sethuraman, Elegant labeled graphs, Jinform. Math. Sci., 2(2010) 45-49.
- 2) C. J. Chang, D. F. Hsu and D. G. Rogers, congressusNumerantium .32(1981),181-97.
- 3) GrayChatrand,PingZhang,Introduction to graph theory,McGraw-Hill International Edition.
- 4) I.Cahit, Elegantvalution of the paths, Ars Combin., 16 (1983) 223-227.
- 5) Joseph A. Gallian 'A Dynamic Survey of graphlabeling' 7th edition ,Dec 29,2014.
- 6) P.Deb and N.B.Limaye, On elegant Labelings of triangluarSnakes, J.Combin.Inform.System Sci., 25(2000)163-172.
- 7) P.Deb and N.B.Limaye, On harmonious labelings of some cycle related graphs, Ars combin., 65(2002)177-197.
- 8) R Balakrishnan and R. Sampathkumar, utilitas Mathematics 46 (1994),97-102.
- 9) R Balakrishnan, A. Selvam and V.Yegnanrayanan 'Some results on elegant graphs'IndianJ.Pure appl.math,28(7):905-916,July 1997
- **10**) V. Laxmi, Alias Gomathi, N murugan and A.Nagarajan 'Some results on elegant graphs' international Journal of mathematical Archive-3(3),2012,pages-1017-1028