RA Journal of Applied Research
||Volume ||2||Issue||08||Pages-571-578||August-2016|| ISSN (e): 2394-6709
www.rajournals.in

Elegant labeling of some graphs and their line graphs

Vijayalaxmi .Shigehalli ${ }^{1}$, Chidanand .A.Masarguppi ${ }^{2}$
${ }^{1}$ Professor, Dept of Mathematics, Ranichannmma University,Vidyasangam,Belgavi, Karnataka India
${ }^{2}$ Research scholar, Dept of Mathematics, Ranichannmma University,Vidyasangam, Belgavi, Karnataka,India

Abstract

An elegant labeling f of graph G with ' q ' edges an injective function from the vertices of G to the set $\{0,1,2,---$ $---q\}$ such that when each edge $(e=x y)$ is assigned the label $\{(f(x)+f(y)) \bmod (q+1)\}$ the resulting edge labels are distinct and non zero. In this paper it is shown to be certain families of line graphs of elegant graphs are elegant graphs.

Key words: Path graph, P_{n}^{2},Comb graph, $H_{n n}, B_{n n}$.

1.INTRODUCTION:

We consider all graphs are finite, simple and undirected. The graph G has ' V ' vertices and ' E ' edges. A graph labeling is an assignmentof integers to the vertices or edges or both subject to certain condition.We refer to survey on graph labeling by Gallian ${ }^{[5]}$. An elegant labelingwas introduced by Chang, Hsu and Rogers in $1981{ }^{[2]}$ have established the elegantness of C_{n} and P_{n}. Balakrishnan ,Selvam and Yengnanaryan ${ }^{[9]}$ have shown that the $\mathrm{H}_{\mathrm{n}}, \mathrm{B}_{\mathrm{nn}}$ are elegant if n is even.Recently V. Laxmi, Alias Gomathi, N murugan and A.Nagarajan ${ }^{[10]}$ have shown that the $\mathrm{P}_{\mathrm{n}}^{2}, \mathrm{P}_{\mathrm{n}} \mathrm{K}_{1}$, are elegant Graphs. The definition and other information's which are used for present investigation are given.

2. Definitions:

Definition 2.1: Elegant graph : An elegant labeling fof graph G with 'q' edges is an injective function from the vertices of G to the set $\{0,1,2,------q\}$ such that when each edge $(e=x y)$ is assigned the label $\{(f(x)+f(y)) \bmod (q+1)\}$ the edge labels are distinct and non zero, the resulting graph is called an elegant graph.
Definition 2.2: $\mathbf{H}_{\mathrm{n}, \mathrm{n}}$:The graph with vertex set $\mathrm{V}\left(\mathrm{H}_{\mathrm{n}, \mathrm{n}}\right)=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3},-\cdots-\mathrm{v}_{\mathrm{n}} ; \mathrm{u}_{1}, \mathrm{u}_{2},--\mathrm{u}_{\mathrm{n}}\right\}$ and edge set $\mathrm{E}\left(\mathrm{H}_{\mathrm{n}, \mathrm{n}}\right)$ $=\left\{\mathrm{v}_{\mathrm{i}} \mathrm{u}_{\mathrm{j}} ; 1 \leq \mathrm{i} \leq \mathrm{n}, \mathrm{n}-\mathrm{i}+1 \leq \mathrm{j} \leq \mathrm{n}\right\}$.[9]
Definition 2.3: P_{n}^{2} :The graph P_{n}^{2} is a graph with vertex set $V\left(P_{n}^{2}\right)=\left\{u_{i} ; 1 \leq i \leq n\right\}$ and $E\left(P_{n}^{2}\right)=\left\{u_{i} u_{i+1} ; 1 \leq\right.$ $\mathrm{i} \leq \mathrm{n}-1\} \mathrm{U}^{\prime}\left\{\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+2} ; 1 \leq \mathrm{i} \leq \mathrm{n}-2\right\}$.[10]

Chacterstics of labeling:

$>$ The vertex labeling $\mathrm{L}(\mathrm{G})$ chosen from the integers set $\{0,1,2,3,---\mathrm{q}\}$
$>$ Label the vertices in clockwise/anticlockwise/randomly in an increasing order.
$>$ It should satisfy $\mathrm{f}=(\mathrm{xy})=\{(\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{y})) \bmod (\mathrm{q}+1)\}$.
$>$ The condition holds good for few $\mathrm{L}(\mathrm{G})$ and it can't be generalized.
$>\mathrm{L}(\mathrm{G})$ has many edges and enough vertices.

3.MAIN RESULTS:

Theorem 3.1: The line graph of $\left(\mathrm{P}_{n^{-}}^{2} e\right)$ is an elegant graph if $n \equiv 1(\bmod 2), n \geq 3$ and $(e=n-4)$.
Proof:Let $G=\left(P_{n}^{2}\right)$ be a graph with ' p ' vertices and ' q ' edges and it's line graph [$\left.L\left(P_{n}^{2}\right)\right]\left\{u_{1}, u_{2}, u_{3},------\right.$ $\left.u_{n} ; v_{1}, v_{2}, v_{3}, v_{4}----------v_{n}\right\}$ be the vertices and the edge set be $\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3},----\mathrm{e}_{\mathrm{n}}\right\}$.
We define the labeling functionf $: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1,2,3,--------------\mathrm{q}\}$ as follows.
$\mathrm{f}\left(\mathrm{u}_{1}\right)=0$
$f\left(u_{2}\right)=1$
$f\left(u_{2 i+1}\right)=5 i$ for $1 \leq i \leq\left(\frac{q-p}{2}\right)$
$\mathrm{f}\left(\mathrm{u}_{2 \mathrm{i}+2}\right)=5 \mathrm{i}+1$ for $1 \leq \mathrm{i} \leq\left(\frac{\mathrm{q}-\mathrm{p}}{2}\right)$
$f\left(v_{1}\right)=2$
$f\left(v_{2 i}\right)=4 i+j$ for $1 \leq i \leq\left(\frac{q-p}{2}\right)$ and $0 \leq j \leq\left(\frac{q-p}{2}-1\right)$
$f\left(v_{2 i+1}\right)=7 i-j$ for $1 \leq i \leq\left(\frac{q-p}{2}\right)$ and $j=0,2,4, \cdots \cdots(n-5)$

The above defined labeling pattern easy to verify that all the vertex labels are different values and we get edge label in the form $\{1,2,3,-\cdots-\cdots q\}$ non - zerointegersand no edge label is repeated.Hence $L\left(P_{n}^{2}-e\right)$ is a elegantlabeling graph.
Example.L(P_{5}^{2}) is a elegant labeling graph as shown in fig $1 \mathbf{n = 5} \mathbf{e}=\mathbf{n}-\mathbf{4}$.
$\mathrm{e}=1$ (one edge deleted)

fig 1 .
Theorem 3.2:The line graph of $\left(P_{n-e}^{2}\right)$ is an elegant graph if $n \equiv 0(\bmod 2), n \geq 4$ and $(e=n-4)$.
Proof:Let $G=\left(P_{n}^{2}\right)$ be a graph with ' p ' vertices and ' q ' edges and it's line graph $\left[L\left(P_{n}^{2}\right)\right] \quad\left\{v_{1}, v_{2}\right.$, $\left.v_{3}, v_{4}-\cdots--\cdots----v_{n} ; u_{1}, u_{2}, u_{3},-\cdots----u_{n}\right\}$ be the vertices and edge set $\left\{e_{1}, e_{2}, e_{3},---------e_{n}\right\}$.

We define the labeling function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1,2,3,-------------\mathrm{q}\}$ as follows.

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{v}_{1+2 \mathrm{i}}\right)=5 \mathrm{i} \text { for } 0 \leq \mathrm{i} \leq\left(\frac{\mathrm{n}}{2}-1\right) \\
& \mathrm{f}\left(\mathrm{v}_{2+2 \mathrm{i}}\right)=3+5 \mathrm{i} \text { for } 0 \leq \mathrm{i} \leq\left(\frac{\mathrm{n}}{2}-2\right) \\
& \mathrm{f}\left(\mathrm{u}_{1+2 \mathrm{i}}\right)=5 \mathrm{i}+1 \text { for } 0 \leq \mathrm{i} \leq\left(\frac{\mathrm{n}}{2}-2\right) \\
& \mathrm{f}\left(\mathrm{u}_{2+2 \mathrm{i}}\right)=2+5 \mathrm{i} \text { for } 0 \leq \mathrm{i} \leq\left(\frac{\mathrm{n}}{2}-2\right)
\end{aligned}
$$

The above defined labeling pattern easy to verify that all the vertex labels are different values and we get edge label in the form $\{1,2,3,------q\}$ non - zero integers and no edge label is repeated. Hence $L\left(P_{n^{-}}^{2} e\right)$ is a elegant labeling graph.
Example.L $\left(\mathrm{P}^{2}{ }_{6}\right)$ is a elegant labeling graph as shown in fig $2 \mathbf{n = 6} \quad \mathbf{e}=\mathbf{n - 4}$.

$\mathrm{e}=2$ (two edge deleted)

fig 2.
Theorem 3.3: The line graph of $\left(\mathrm{P}_{\mathrm{n}} \mathrm{K}_{1}\right)$ is an elegant graph if $\mathrm{n} \leq 5$
Proof:Let $G=\left(P_{n} K_{1}\right)$ a comb graph with ' V ' vertices and ' E ' edges and it's line graph
$\left[L\left(P_{n} H_{1}\right)\right]\left\{x_{0}, x_{1}, x_{2}, x_{3}----------x_{n} ; y_{1}, y_{2}, y_{3},-\cdots----y_{n}\right\}$ be the vertices and edge set $\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3},--------e_{n}\right.$ $\}$.We define the labeling function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1,2,3,-------------\mathrm{q}\}$ as follows.Case 1:n=2
$\mathrm{f}\left(\mathrm{x}_{1}\right)=0$
$\mathrm{f}\left(\mathrm{y}_{1}\right)=1$
$\mathrm{f}\left(\mathrm{y}_{2}\right)=2$

Case 2 : $\mathrm{n}=3$

$\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)=\mathrm{i}$ for $0 \leq \mathrm{i} \leq \mathrm{n}-2$
$\mathrm{f}\left(\mathrm{y}_{\mathrm{i}}\right)=\mathrm{i}+1$ for $1 \leq \mathrm{i} \leq \mathrm{n}$

Case 3:n=4

$\mathrm{f}\left(\mathrm{x}_{1+2 \mathrm{i}}\right)=5 \mathrm{i}+1 \quad$ for $\mathrm{i}=0,1$
$\mathrm{f}\left(\mathrm{x}_{2}\right)=2$
$\mathrm{f}\left(\mathrm{y}_{1+2 \mathrm{i}}\right)=5 \mathrm{i}$ for $\mathrm{i}=0,1$
$\mathrm{f}\left(\mathrm{y}_{2+2 \mathrm{i}}\right)=3 \mathrm{i}+4$ for $\mathrm{i}=0,1$

Case 4:n=5

$\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)=\mathrm{i}$ for $0 \leq \mathrm{i} \leq \mathrm{n}-2$

$$
\mathrm{f}\left(\mathrm{y}_{1+2 \mathrm{i}}\right)=(\mathrm{n}-1)+\mathrm{i}(\mathrm{i}+1)+\mathrm{i} \text { for } 0 \leq \mathrm{i} \leq\left(\frac{\mathrm{n}-1}{2}\right)
$$

$\mathrm{f}\left(\mathrm{y}_{2 \mathrm{i}}\right)=(\mathrm{n}-1)+2 \mathrm{i}$ for $\mathrm{i}=1,2$
The vertex labeling pattern defined above covers all the vertices with different values and we get edge label in the form $\{1,2,3,-----\mathrm{q}\}$ non - zero +ve integers and no edge label repeated.Hence $\mathrm{L}\left(\mathrm{P}_{\mathrm{n}} \mathrm{K}_{1}\right)$ is elegant labeling graph.

Example.L $\left(\mathrm{P}_{5} \mathrm{~K}_{4}\right)$ is a elegant labeling graph as shown in fig 3
$\mathbf{e}_{2} \mathbf{e q}_{4} \mathbf{e}_{6}$
$\mathrm{P}_{5} \mathrm{~K}_{1} \rightarrow$
$\mathbf{e}_{1} \mathbf{e}_{3} \mathbf{e}_{5} \mathrm{e}_{7} \mathbf{e}_{9}$

fig 3

RA Journal of Applied Research
||Volume ||2||Issue||08||Pages-571-578||August-2016|| ISSN (e): 2394-6709
www.rajournals.in

Theorem 3.4: The line graph of ($\mathrm{H}_{\mathrm{n}} \mathrm{n}$) is a elegant graph if $\mathrm{n} \leq 3$.
Proof: Let G be $a\left(H_{n n}\right)$ graph with ' p ' vertices and ' q ' edges and it's line graph $L\left(H_{n n}\right)\left\{v_{1}, v_{2}, v_{3}, v_{4}-\ldots-\right.$ $\left.--v_{n}\right\}$ vertices and edge set $\left\{e_{1}, e_{2},-----e_{n}\right\}$. We define the labeling function $f: V(G) \rightarrow\{0,1,2--------n-$ 1 \} as follows

Case 1: $\mathrm{n}=2$
$\mathrm{f}\left(\mathrm{v}_{1}\right)=0$
$\mathrm{f}\left(\mathrm{v}_{2}\right)=1$
$\mathrm{f}\left(\mathrm{v}_{3}\right)=2$

Case 2:n=3

$\mathrm{f}\left(\mathrm{v}_{1}\right)=6$
$\mathrm{f}\left(\mathrm{v}_{2}\right)=0$
$\mathrm{f}\left(\mathrm{v}_{2+\mathrm{i}}\right)=\mathrm{i}$ for $\mathrm{i}=1,2,3,4$
such that the vertex labels are different numbers and we get edge label in the form $\{1,2,3,-----\mathrm{q}\}$ non zero integers and no edge label is repeated. Hence $L\left(H_{n n}\right)$ is an elegant labeling graph.

Example.L $\left(\mathrm{H}_{33}\right)$ is a elegant labeling graph as shown in fig 4

$$
\left(\mathrm{H}_{33}\right) \rightarrow
$$

fig4
Theorem 3.5: The line graph of P_{n} is an elegant graph if $n \equiv 0(\bmod 2)$.
Proof: Let P_{n} be a path graph with a vertex set as $\left\{v_{1}, v_{2}, v_{3}, v_{4}--\cdots--v_{n}\right\},\left\{e_{1}, e_{2},-----e_{n-1}\right\}$ be the edge and it's line graph $\mathrm{L}\left(\mathrm{P}_{\mathrm{n}}\right)$.has ' P 'vertices and ' $\mathrm{P}-1$ 'edges.

RA Journal of Applied Research
||Volume ||2||Issue||08||Pages-571-578||August-2016|| ISSN (e): 2394-6709
www.rajournals.in

We define the labeling function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1,2--------\mathrm{q}\}$ as follows

$$
f\left(u_{i}\right)=\left(\frac{p-1}{2}+i\right) \bmod (q+1) \quad \text { for } 1 \leq i \leq P
$$

The vertex labeling pattern defined above covers all the vertices with different numbers.Label Verticesfrom right to left side of the path and weget edge label in the form of $\{1,2,3,-----\mathrm{q}\}$, non - zero integers and no edge label is repeated.Hence $\mathrm{L}\left(\mathrm{P}_{\mathrm{n}}\right)$ is a elegant labeling graph.
Example, $\mathrm{L}\left(\mathrm{P}_{6}\right)$ is a elegant labeling graph as shown in fig 5

fig 5

Theorem 3.6: The line graph of $\left(\mathbf{B}_{\mathrm{n}}\right)$ is a elegant graph if $\mathrm{n}=2$

Proof: Let G be a bistargraph with $v_{1}, v_{2}, v_{3}, v_{4}-----v_{n}$ be the vertices and edges $e_{1}, e_{2},---------e_{n 1}$ it's line graph $L\left(B_{n n}\right)$.has ' V 'vertices and ' E 'edges. We define the labeling function $\rightarrow\{0,1,2--------q\}$ as follows
$\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)=0$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}+1}\right)=3 \mathrm{i}+1$ for $\mathrm{i}=0,1$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}+1}\right)=3 \mathrm{i}+3$ for $\mathrm{i}=0,1$

The above defined labeling pattern we can label the vertices with different values and weget edge label in the form $\left\{1,2,3\right.$,------------ q\} non - zero integers and no edge label is repeated.Hence $\mathrm{L}\left(\mathrm{B}_{\mathrm{nn}}\right)$ is a elegant labeling graph.

RA Journal of Applied Research
||Volume ||2||Issue||08||Pages-571-578||August-2016|| ISSN (e): 2394-6709 www.rajournals.in

Example. L(B_{22}) is a elegant labeling graph as shown in fig 6
$\mathrm{B}_{22} \rightarrow$

fig 6

CONCLUSION:

In this paper we have shown that line graph of $\mathrm{P}_{\mathrm{n}}^{2}$, Comb graph, Path graph, $\mathrm{H}_{\mathrm{n}}, \mathrm{B}_{\mathrm{nn}}$ are elegant graphs it can also verified for some graphs.

REFERENCE:

1) A.Elumalai and G.Sethuraman, Elegant labeled graphs,Jinform.Math.Sci.,2(2010) 45-49.
2) C. J. Chang, D. F. Hsu and D. G. Rogers, congressusNumerantium .32(1981),181-97.
3) GrayChatrand,PingZhang,Introduction to graph theory,McGraw-Hill International Edition.
4) I.Cahit,Elegantvalution of the paths,Ars Combin.,16 (1983)223-227.
5) Joseph A. Gallian 'A Dynamic Survey of graphlabeling' $7^{\text {th }}$ edition ,Dec 29,2014.
6) P.Deb and N.B.Limaye,On elegant Labelings of triangluarSnakes,J.Combin.Inform.System Sci.,25(2000)163-172.
7) P.Deb and N.B.Limaye,On harmonious labelings of some cycle related graphs,Ars combin.,65(2002)177-197.
8) R Balakrishnan and R. Sampathkumar, utilitas Mathematics 46 (1994),97-102.
9) R Balakrishnan, A. Selvam and V.Yegnanrayanan 'Some results on elegant graphs'IndianJ.Pure appl.math,28(7):905-916,July 1997
10) V. Laxmi, Alias Gomathi, N murugan and A.Nagarajan 'Some results on elegant graphs' international Journal of mathematical Archive-3(3),2012,pages-1017-1028
