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As a classical combinatorial problem, the binary quadratic programming problem has many 

applications in finance, statistics, production management, etc. The state-of-the-art solution for 

solving this problem accurately is based on branch-and-bound frameworks, with the low bound 

support of a semi-definite programming (SDP) relaxation. This paper generalizes the spectral 

bounds in the literature and proposes a sequence of improved SDP bounds for the binary quadratic 

programming problem. Our method relies on the closest binary points to an affine space, which can 

be found by reverse enumeration technique. 
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Introduction 

We consider the classical NP-hard binary quadratic 

programming problem: 

     
        

 

 
        

             
 

for given           and     . And we denote the 

binary quadratic programming problem without the linear 

term by: 

      
       
             

 

for given          . It is easy to see that        

contains the Max-Cut problem as its special case. 

The problem       is a classical combinatorial 

optimization problem with many applications. Exact 

solution methods for       are of a branch-and-bound 

framework based on various lower bounding techniques and 

branching rules. One of the most powerful bounds is 

obtained from semidefinite programming relaxation of 

     . Algorithms based on SDP relaxations have been 

proposed for solving       (see, e.g., [4], [8], [10]). 

It is known that the performance of a branch-and-

bound algorithm depends a lot on the quality of the bound of 

its root node. Thus many authors have worked on improved 

bounds from the SDP bound. Malik et al. [9] investigated 

the duality gap between maximum cut problem and its semi 

definite relaxation and showed that the gap can be reduced 

by computing a reduced-rank binary quadratic problem, 

which results in a bound tighter than the well known 

Goemans and Williamson’s SDP bound [7]. Ben-Ameur and 

Neto[2], [3] generalized Malik et al.’s results to binary 

quadratic problems without the linear term        by 

introducing spectral bounds. Sun et al. [12] generalized 

Malik et al.’s results to       with the linear term and the 

methodology has been extended to binary quadratic 

problems with linear constraints by Zheng et al. [15]. Xia et 

al. [13] improved Malik et al. ’s results with a weighted 

distance measure instead of the Euclidean distance measure. 

The above improved bounds all rely on the 

information of the distance of         to an affine space, 

which can be obtained via the reverse enumeration (see [1], 

[11]) or other enumeration technique (see [6]). 

In this paper, we would review the classical SDP 

bound for       in Section 1. In Section 2, we review how 

we apply the reverse enumeration technique and further 

develop an algorithm to obtained the 2nd closest point and 

3rd closest point and so on to an affine space. In Section 3, 

we review the bounds for binary quadratic problems without 

the linear term        in [3] and [9]. In Section 4, we will 

generalize the spectral bounds in [3] to       and prove the 

bound in [12] as a special case. In Section 5 we generate a 

sequence of improved bounds starting from the bound in 

[12], based on the algorithm developed in Section 3. We 

conclude in Section 6. 

The notations used in this paper are as follows. 

        converts a vector to a diagonal matrix with the  -th 

component of the vector at the   -th position of the matrix. 

     denotes the optimal value of a problem. The dot 

product between two matrices     denotes the trace of 

  .         change a vector to a sign vector indicating the 

signs of each component.           denotes the Euclidean 

distance between two sets.                denotes the linear 

space spanned by          . We index different vectors by 

superscripts such as           and refer to the value in 

specific coordinate of a vector by subscripts such as 
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         . Let   denotes the all one vector and   denotes the all zero vector. 

 

1. The Classical SDP bound 

We give a brief review of the classical SDP relaxation for       in this session. For      , because          ,   
   , the 

problem       is equivalent to the following problem 

      
   

 

 
                       

             
 

for any     . Thus, by making              , the objective function can always be made convex. Removing the 

constraints of         the following value 

        
    
        

 

 
                         

is a lower bound of the optimal value of       and       . Thus the best lower bound can be obtained by solving 

   
       

        
 

Actually,        is the Lagrangian function and the problem     is the Lagrangian dual problem of      . It can be shown that 

    is equivalent to the following problem: 
    

    

 

 
                         

        

 

which can be formulated as the following SDP problem: 

    

    

    
 
           

          
   

        

 

Besides     , we can derive an SDP relaxation for       directly from the primal point of view.       is equivalent to the 

following rank-constrained problem: 

   
 

 
       

    

               

 
  
  

   

     
  
  

   

 

Dropping the rank constrained, we obtain the primal SDP relaxation for      : 

    

   
 

 
       

    
               

 
  
  

   

 

It can be shown that      and      are conic dual to each other. And because they are strictly feasible, by duality theorem, 

           . 

 

2. Closest Binary Points to an Affine Space 

In this section we will review how we apply the reverse enumeration technique and further develop an algorithm to obtain from 

the binary set the 2nd closest point and 3rd closest point and so on to an affine space. 

Firstly, let us look at the following graph.  

 
Fig.1Dividing a line to segments by the distance to points in         
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In Figure 1, we would like to find the closest point in         to a line in the plane. We can divide the line into segments 

according to there distance to the points in        . Then by enumerating these segments, we can find the closest point in         

to the line. Armed with this example, let us look at a general case. Given an affine space  , we want to know                . 

This can be done by identifying the closest point in         to  . We can express   by 

                

 

   

                           

where       
        

     ,       
        

               . To any point       
        

   in  , the closest point in 

        is         . Thus if we look at the cells cut out by the following   hyperplanes in   : 

      

 

   

        

then any point          
 
      generated from the   in the same cell in    will have a common closest point in        . It 

has been known that the number of cells cut out by Equation (1) is bounded by       (see [5] and [14]). Let us index the cells by 

        , then each cell corresponds to a closest point in        , denoted by          . By reverse enumeration technique in 

[1], [6] and [11], those cells and the corresponding closest points can be enumerated in time      . Obviously the closest point in 

        to   must be among            , which can be found during the enumeration. 

We index the points in the set         by             
 
 such that                                   

 
   . By 

above discussion, we can identify   , but can we identify       and so on? We are going to propose an algorithm to find 

           progressively. Here let us define the  -th neighborhood of a point                     
  by 

                        
      

which contains points in         that differ from   by exactly   coordinates. And for an index set            , we define the 

tail combination set of   by 

                                           

which contains points in         that are of the same value with   in the coordinates in            . 

Before we introduce the algorithm, we need the following lemma. 

Lemma1. Let            denotes the point that defers from    in the  -th coordinate. Let            and             . 

Suppose the set                   has been removed from        . Then for any point     , the closest point in 

          to it must lies in                           . 

Proof. Any point              must differ from    in at least one coordinate in            . Thus                

                   .   

The algorithm to obtain from the binary set the 2nd closest point and 3rd closest point and so on to an affine space is 

given as follows. 

 
Algorithm 1(Arrangement by Distance) 

(1) Let    . Conduct reverse enumeration to find         and          . Let                     ,            . 
Then 

           
   
           

(2) Remove   from  . If   is empty, stop. 

Add   into  . 

For each cell   , update    as stated in Lemma 1. 

Update       
   . 

           
   
           

(3) Go to (2). 

 
The set   contains the set of identified points. For every iteration  , we update the set   such that for any point in the affine space 

 , its closest point in           is included in  . Thus the algorithm is valid.   

 

3. Improved Bounds for Binary Quadratic Problems without the Linear Term 

In this section we consider       , the binary quadratic problems without the linear term. We will review the improved bounds 

for        in [3] and [9].Let the spectral decomposition of   be: 

                              
           

where              are the eigenvalues of   and           are the corresponding orthonormal eigenvectors. For any point 

         , we denote the distance between it  and the linear space spanned by              by                       . We 

can decompose                . Then we have: 
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and 

                            
                       

 

                                           
 

            
                     

  
 

      
        

  

 

We define               
                     

         
                      . Thus for any          , we have 

                            
        

    
 . 

Theorem 1 ([3])                
    

            . 

Proof. Let   be the optimal solution to       . Decompose                .Then 

               

                               
           

     
      

          
 

      
    

        
  

           
        

  

           
        

  

    
            

 

        
 

   

   

            

 

  As a special case to     , there is a dual SDP relaxation for        and will return the optimal dual solution    such 

that                 and the optimal dual objective value will be      . Suppose    has spectral decomposition: 

                                 
        

                 

where     
        

      
       

  are the eigenvalues of   and           are the corresponding orthonormal eigenvectors. 

And define   
                                . Then similar to Equation (2), let   be the optimal solution to        and we 

have: 

                     

          
  

   

   

     
    

   
 

By truncating part of the sum in the above inequality, we have the bound stated in [9]: 

                
      

      

Both    and   
  are the distance of         to an affine space, thus for fixed  , they can be computed via reverse enumeration 

technique as discussed in Section 2. 

 

4. Improved Bounds for Binary Quadratic Problems with the Linear Term 

Sun et al. [12] generalized the bound in Equation (4)for      . In this section we will generalize the spectral bounds in [3] for 

       to       and prove the bound in [12] as a special case. Solve      and we will get an unique optimal dual SDP solution 

   for      . The existence and uniqueness of the    is addressed in [9]. Let               , then       can be expressed 

as: 

                
 

 
                 

and the derivative of       is      . Thus   must lie in the range space of   , otherwise there will be no stationary point in 

     . Decompose    to be: 

                                         
           

where                         are the eigenvalues of    and           are the corresponding orthonormal 

eigenvectors. And define 

                    
 

    
     

 

  
                

Lemma 2       
 

 
                      

 

 
    . 
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Proof. 

      
 

 
                      

 

 
    

 
 

 
                    

 
 

 
                                  

            

                   
 

    
     

 

  
               

                                 
             

                     
 

    
     

 

  
                

                                    
             

     

 
 

 
                                         

 
 

 
              

 

The last equality is due to the fact that                                 , which results from that fact that   lies in the range 

space of   . Thus                  for some   and this                  .   

Because   is positive semidefinite, we can get that 

          
 

 
                      

 

 
            

 

 
      

and the minimum is attained at the set                 . Choose any point       and fix it, we can write    

                 . For any point            we denote the distance between   and the affine space 

              

 

   

                           

by                          . We can decompose         
         

 . Then we have: 

                       
                                      

 

        
           

   
 

                    
           

   
 

                         

      
        

  

 

We define               
                        

         
                         . Thus for any          , we have 

                               
        

    
 . 

Theorem 2             
 

 
     
             

   

Proof. Let           be the optimal solution to      . Decompose         
         

 . We have 
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Truncating the sum in the right hand side of Theorem 2, we have the bound developed by Sun et al. [12]: 

             
 

 
      

        
 

 
        

                  

The above bound can be understood geometrically. We have the following lemma. 

Lemma 3The contour of             
 

 
      

  is the maximum contour of       contained by the set 

                    . 

Proof. For any point   such that             
 

 
      

 , decompose         
         

 . We have 

      
 

 
                                      

 

 
    

       
 

 
         

          
  

       
 

 
      

 

 

Thus         
          

        
 , implying that                 

        
    

 . Then equality is attained by choosing   

such that         and              .   

The situation can be viewed in the following graph. 

 
Fig.2 Geometrical interpretation of the improved bound by Equation (6) 

As can be seen from Figure 2, there is no point of         inside the contour of             
 

 
      

 , which forms a lower 

bound for      .  Since    is the distance of         to an affine space, for fixed  , they can be computed in polynomial time 

via reverse enumeration technique as discussed in Section 2. 

 

5. A Sequence of Improved Bounds 

In this section, we are going to develop a sequence of improved bounds for       based on Algorithm 1 developed in Section 2. 

We use the notations developed in Section 4. The sequence of bounds will start on the bound by Sun et al. [12] in Equation (6). 

Index the points in the set         by             
 

 such that                                     
 
    . By 

Algorithm 1 we can find them progressively from   . Recall that the objective function      
 

 
         agrees with       

on the set        . 

Lemma 4For any    , if          
 

 
        

            
             

    , then    is a lower bound to      , otherwise the 

optimal solution to       is          
             

    . 

Proof. If       
             

    , for any    , from Equations (5), we have             
 

 
        

               

 

 
        

           . Thus for any          ,        . 

If       
             

    , if               , then          
             

       . But             
 

 
        

           . We 

have a contradiction, thus               . 

Armed with Lemma 4 and Algorithm 1, we are ready to state the algorithm for a sequence of improved bounds. 
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Algorithm2 (Sequence of Bounds) 

(1)    ;     ; 

(2) Return    from Algorithm1; 

         ; 

If        
 

 
        

            
   
    , 

            
 

 
        

        ; 

       ; 

Go to (2); 

else 

         
   
     

Stop; 

EndIf 

 
Algorithm 2 must terminate because the set         is finite. If the total iteration is  , then we have the sequence of bounds 

                  . 

 

6. Conclusion 

In this paper, we have generalized the spectral bounds in the 

literature to the general binary quadratic programming 

problem. By applying the reverse enumeration technique, 

we have further developed an algorithm to obtained from the 

binary set the 2nd closest point and 3rd closest point and so 

on to an affine space and proposed a sequence of improved 

SDP bounds for the binary quadratic programming problem. 

Since the state-of-the-art solution for solving this problem 

accurately is based on branch-and-bound frameworks, our 

results can help developing more efficient exact algorithms 

to solve the binary quadratic programming problem. 
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