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This paper considers the scheduling problem of multiple rail cranes to load and unload inbound and 

outbound containers to and from wagons of trains within rail stations. We not only assign working 

areas to cranes, but also determine the job sequence of each crane. We minimize the maximum 

completion time (makespan) of all rail cranes. Dual-cycle operations of cranes are applied and the 

re-handling work of containers is also considered. A branch-and-bound algorithm is developed to 

find an optimal solution. A simulated annealing algorithm is designed to obtain near optimal 

solutions of large-sized problems. Numerical examples are studied to investigate the performance of 

these algorithms. 
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I. INTRODUCTION 

The volumes of goods being transported internationally has 

increased rapidly in the last few decades. Rail transportation 

is an important mode of global transportation. Although it is 

limited to rail hubs, it is generally considered to be a 

relatively safe and environmentally friendly transportation 

mode, which can efficiently move massive quantities of 

containers over long distances. The rail station is critical to 

the efficiency of rail transportation. Figure 1 shows a general 

rail stations layout. In rail stations, outbound containers are 

unloaded and inbound containers are loaded using rail 

cranes, forklifts and reach stackers, and the waiting time of 

trains in rail stations is directly dependent on the operation of 

these systems. 

This paper deals with the job sequencing problem of rail 

cranes in rail stations located at seaport container terminals. 

We not only assign the working areas but also determine the 

job sequences, minimizing the maximum completion time of 

all rail cranes. Dual-cycle operations are applied. If the 

wagon onto which an inbound container will be loaded is not 

empty, the inbound container is moved to temporary storage 

area. The inbound container is loaded onto the wagon after 

the wagon is empty. This is referred to as a “re-handling” 

case. 

The latest review of container processing in rail stations was 

presented by Boysen et al. (2013) with the assignment of 

container movements by cranes and determining the 

sequence of container movements. Alicke (2002) considered 

the logistical problems relating to the loading and unloading 

of trains in a theoretical intermodal terminal called Mega 

Hub, where containers are transferred between trains and 

shuttle cars by cranes. That article not only dealt with the 

assignment problem of containers to cranes, but also 

addressed sequencing problems relating to containers. That 

author formulated an optimization model based on Constraint 

Satisfaction, and developed various heuristics to minimize 

the maximum lateness of all trains. Boysen and Fliedner 

(2010) discussed how to determine the static crane areas in 

rail – road transshipment yards. In contrast, Boysen et al. 

(2010) addressed the static crane areas in rail – rail 

transshipment yards. Both of these studies used dynamic 

programming to find the optimal working area for each rail 

crane. However, they did not determine the optimal job 

sequencing of rail cranes. None of these researches assumed 

the dual – cycle operation of rail cranes. Jeong and Kim 

(2011) applied the dual – cycle operation of a crane in order 

to determine the job sequence of the rail crane and the 

parking positions of container trucks. Nevertheless, they 

considered the operation of a rail crane which just moves in 

one direction along the train. Pap et al. (2012) developed a 

branch-and-bound algorithm to find the optimal job sequence 

of a rail crane under a dual-cycle operation, although they 

did not consider re-handling cases for containers. Guo et al. 

(2013) dealt with the scheduling problem of loading and 

unloading containers between a train and container yards. 

Multiple gantry cranes were scheduled in a rail station with 

constraints of safety distance, as well as a non-crossing 

requirement being placed on the cranes. However, that article 

assumed the one dimension travel (gantry travel) of the 

cranes, and did not consider dual-cycle operation or the re-

handling containers. Nguyen and Yun (2014) considered the 

job scheduling of a rail crane in rail terminals. The paper 

studied the transfers of containers between trains and trucks 
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by a rail crane. In addition, re-handling and the dual-cycle 

operation are considered.  

The remainder of this paper is organized as follows: The 

scheduling problem of multiple rail cranes in a rail station is 

presented in detail in Section 2. Branch and bound simulated 

annealing algorithms are proposed in Sections 3 and 4, 

respectively. Numerical examples are studied in Section 5. 

Section 6 concludes the study. 

 

 
Figure 1. Bird’s eyes view of a rail station. 

 

II. THE SCHEDULING PROBLEM OF MULTIPLE 

RAIL CRANES IN A RAIL STATION  

In this section, the scheduling problem of multiple rail 

cranes in a rail station is represented in detail. We focus on 

the rail station located in seaport container terminals, as is 

shown in Figure 1. The locations, where trains park, are 

called “rail tracks,” and places where trucks park for loading 

and unloading containers (inbound container or outbound 

containers) are called “transfer points”. The “transfer track” 

is a row of transfer points, which would most likely be in the 

form of a road of trucks.  

Supposing that there are T trains on the rail tracks, and they 

are being handled by K rail cranes. Figure 2 shows the 

notation of the multiple rail cranes scheduling problem. In 

this problem, we not only consider the makespan of all rail 

cranes, maxC , but also determine the working area of each 

rail crane, which is denoted by the right-hand side boundary 

of the area, kb for 1,...,k K . Travelling time of a crane 

between two adjacent wagons is xt  and the travelling time 

of a crane between two adjacent trains is yt .We consider 16 

operation cases of cranes, which are detailed in Table 1. In 

table 1,  i and j denote the container indices. I and O are the 

sets of inbound containers and outbound containers.  x  

and  y  indicate the position of a container in a two-

dimensional area. The travelling time of a crane between to 

position  ,x y  and  ', 'x y  is shown by 

 ,

', ' ' , 'x y

x y x yd Max t x x t y y   . 1iR   means 

that the container i  needs to be re-handled. Otherwise, it 

will have a value of “0”. Furthermore, we assume that 

i. Trains are available for processing simultaneously (at 

time zero). 

ii. A truck carries only one container at a time.  

iii. Temporary storage space is unlimited.  

iv. The loading position of each inbound container is 

given. 

v. Travelling times of cranes are constant. 

 
Figure 2. Notation of the scheduling problem of multiple 

rail cranes. 

 

III. BRANCH-AND-BOUND ALGORITHM  

In this section, a branch-and-bound algorithm (B&B) is 

developed to find the optimal solutions of the multiple rail 

cranes scheduling problem. The solutions of B&B are the 

sequence of containers assigned to all cranes. The sequences 

are constructed by assigning each available container to the 

crane which has the earliest completion time.   

The following notation is used to describe the solution 

process. 

Q

  

The set of containers assigned to all cranes  

kP
  

The set of containers which were assigned to 

crane k  

k
R

 

The set of containers which have not been 

assigned to the sequence of crane k  , but which 

are located in the working area of crane k  

    :  and xk k l r

k kR i P l x j i l   

 

kS

  

The sequence of containers assigned to crane k   

kc

  

Completion time of the current node in the 

search tree by crane k . 

c

kl

  

The last position along the x direction of crane 

k  after performing the container sequence kS   

l

kl The left boundary of crane k  after performing 
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  the sequence kS ; 1 1ll   . 

r

kl

  

The right boundary of crane k  after performing 

the sequence kS ; 
r

Kl W . 

The process of the branch-and-bound algorithm (B&B) 

is as follows: 

Step 1: The root node of the search tree is determined as 

follows: 

Q  , all job sequences of cranes are empty, 

 kS  , 0kc   for 1,...,k K .  

The heuristic, “Travel to the Right,” is used to generate 

the initial upper bound, and to set it as a current upper bound 

(CUB). 

Step 2: The node which has the smallest lower bound 

value is selected from the search tree. 

Step 3: The crane with smallest kc  is selected, and the 

kP  is generated.  

  

    

  

1

1 1

1

\ :  for 1

\ :  and 

 for 2,...,K 1

\ :  for K

l

k

l r

k kk

r

k

i I O Q x i l k

i I O Q x i l x i l
P

k

i I O Q x i l k



 



    

    

 
 


   

 (1) 

All feasible children nodes of the current node are generated 

by adding each element of 
kP  to 

kS .  

Step 4: Calculate lower bounds of all feasible children 

nodes 

Step 5: If containers sequences of all cranes within a 

node are not empty, the upper bound of the node is assessed. 

If upper bound of a node is smaller than CUB, the CUB is 

updated. 

Step 6: If the lower bound of a feasible node is less than 

or equal to the CUB, the feasible children node is added to 

the search tree as a new branch. 

Step 7: If all containers at the new branch are assigned 

to cranes, the algorithm stops. Otherwise, return to Step 2. 

1. Lower bounding (LB) procedure 

In this section, we develop a lower bound for the 

multiple rail cranes scheduling problem. The notation for 

calculating the lower bound of the objective value is 

illustrated in Figure 3. The working areas of all cranes are 

separated into many partitions based on the boundaries of 

rail cranes. The boundaries of a crane’s working area of a 

node in a search tree are the farthest wagon on the left (“left 

boundary”), and the farthest wagon on the right (“right 

boundary”), that were assigned to a crane. The unassigned 

area located outside the boundary of crane k is denoted as 

 for 1,..., -1kL k K , which is used to express the travel 

time of cranes along the area. The unassigned areas are 

separated into many segments based on the location of 

containers in those areas. The lengths of the 
thm segments 

are denoted as  for 1,..., 1k

ml k K  , which is expressed 

by the travel time of cranes.  

The lower bound of the scheduling problem of multiple 

rail cranes is calculated as follows: 

 
max

1

, /
K

k

k

LB Max C C K


  
   

  
   (2) 

where: 

 
max

1,...,
max k
k K

C C


  (3) 

  for 1,...,k k kC c t k K     (4) 

  
   ,

min max , 2
2  for 1,...,

k

x i y ik k

k x i T

i R

t t t d k K




     (5) 

    
   

1
,

max , 2
1 \

K
x i y ik k

x i T
k i I O Q

L l d



  

      (6) 

 
1

 for 1,..., 1
N

k k

m

n

L l k K


     (7) 

and  

  max  for 1,..., 1k k

ml Max l k K     (8) 

The following explanations demonstrate why this 

calculation is the lower bound of the makespan of all cranes. 

In equation (2), maxC  is the maximum among the lower 

bounds of the operation time of cranes, kC , within their 

working areas. kC  is the lower bound of the operation time 

of  crane k  because kc  is the total time required to handle 

all containers in the job sequence of crane k , and kt  , the 

minimum travelling time of the crane k  to handle all 

remaining containers in its working zone. 
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In (5), the value of kt  includes two elements as 

min max2 k kt t  and  
   ,

, 2
k

x i y i

x i T

i P

d




 . 

The following explanations demonstrate why this 

calculation is the lower bound of the makespan of all cranes. 

In equation (2), maxC  is the maximum among the lower 

bounds of the operation time of cranes, kC , within their 

working areas. kC  is the lower bound of the operation time 

of  crane k  because kc  is the total time required to handle 

all containers in the job sequence of crane k , and kt  , the 

minimum travelling time of the crane k  to handle all 

remaining containers in its working zone. In (5), the value of 

kt  includes two elements as min max2 k kt t  and 

 
   ,

, 2
k

x i y i

x i T

i P

d




 . The first element is the minimum travelling 

time of the gantry from the lowest boundary to the farthest 

boundary. The second element is the minimum travelling 

time required for a crane to load and unload a container. The 

calculation of kt has ignored all travelling times of the crane 

between containers and all re-handling movement times of 

the crane, and hence, maxC  is the lower bound of the 

makespan. Similarly, to kt ,   is the minimum travelling 

time of cranes to finish all the containers within the zone, 

which have not been assigned to any crane. Thus, the 

summation of   and all kC  divided by K  is the lower 

bound of the makespan.  

2. Upper bounding (UB) procedure 

The upper bound of the makespan of all cranes is obtained 

by the heuristic “Travel to the Right” (Jeong and Kim, 

2011). At a node, the set of containers assigned to crane k  

is generated as   :k k l

kV i P x i l   . The dual-

cycle operation of a crane is constructed by the matching 

phase, and the job sequences of cranes are obtained by the 

‘Travel to the Right’ procedure. The next two subsections 

will describe these procedures in detail. 

2.1. The matching phase 

In the matching phase, inbound containers and outbound 

containers are matched within a single operational cycle. 

The matching phase results in sets of inbound and outbound 

containers being scheduled as tasks for cranes. There are 

two types of tasks as 1) single task, in which the cranes need 

to perform single-cycle operations, and 2) dual tasks, in 

which the cranes need to perform dual-cycle operations. In 

this process, the ‘Hungarian method’ is applied to match 

inbound and outbound containers together. The cost matrix 

is calculated as follows: 

 

Figure 3. An illustration of notation for the lower bound of the multiple rail cranes scheduling problem. 
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   
 

   
   

 
   

   
 

   
   

 
   

 
   

   
 

, 2 , ,

, , , 2

, 2 , ,

, , , 2

,

, 2

, 2

,

for  and        

for  and   

                            

 

 

3  for  and         

 f

x i T x i y i x j y j

x i y i x j y j x j T

x i T x i y i x j y j

x i y i x j y j x j T

x i y i

ij x i T

x i T

x i y i

i I j O

i I j O

d d d

pd d pd

c d i I j O

d













 

 

 

 

  

   
 , 2

,

or                                                  

 for                                                  
x i T

x i y i

i I

d i O
















  (9) 

(i) The inbound container, i , is either on the left of the 

outbound container, j , or is located closer to the 

transfer track than j ,  

            ;or  and x i x j x i x j y i y j  

 

(ii) The inbound container, i , is either on the right of the 

outbound container, j , or is located further from the 

transfer track than j ,  

            ;or  and x i x j x i x j y i y j  

. In this case, the containers have a greater likelihood 

of being re-handled. Hence, we assign a penalty value 

“ p ” to avoid these issues.  

(iii) The inbound container, i , and the outbound container, 

j , are located at the same place on the trains, 

        and x i x j y i y j  . 

(iv) The crane performs a single cycle operation with an 

inbound container. 

(v) The crane performs a single cycle operation with an 

outbound container. 

2.2. Sequencing phase  

In this phase, the cranes travel from the left to the right and 

serve those containers which are closer to the transfer track 

first. The process of this algorithm is as follows:  

Step 1:    for 1,...,kS k K  is the current node in 

the search tree, which needs to be calculated the upper 

bound. Let 
1

kC  be the set of all tasks assigned to crane k  

in the matching phase. Let 
2

kC  be the final task sequence 

of crane k . Let 
3

kC  be the set of all tasks including re-

handling work. 

Step 2: A crane k  is chosen in the order of 1 to K. Set 

2

kC    and
3

kC  
.  

Step 3: Choose a task in 
1

kC that is located furthest to 

the left and nearest the transfer track. Remove the task in 

1

kC . The task is added to 
2

kC . If a task needs to be re-

handled, the task is added to
3

kC . 

Step 4: If 
1

kC is not empty, repeat Step 3. Otherwise, go 

to Step 5 

Step 5: Choose the first task in 
3

kC  and remove it 

from
3

kC . Add the task into the sequence of 
2

kC to 

minimize the finishing time of crane k .  

Step 6: If 
3

kC is not empty, go to Step 5. Otherwise, go 

to Step 7. 

Step 7: If all cranes tasks are completed, the algorithm 

stops. Otherwise, go to Step 2.  

 

IV. SIMULATED ANNEALING ALGORITHM 

The simulated annealing algorithm is developed to find near 

optimal solutions of the multiple rail crane scheduling 

problem. This section will describe operators of the SA. 

1.  Initial solution construction 

         A solution of the scheduling problem consists of two 

parts as 1) the working area and 2) the job sequence of each 

crane. The initial working areas are assigned to cranes based 

on the balance of the workload. The “workload” is the 

summation of all travelling times to discharge outbound 

containers or to retrieve inbound containers (Boysen and 

Fliedner 2010) We use the example in the previous section 

to illustrate how to construct the initial solution.  

We assume that the travelling time between two adjacent 

trains is one-time unit, and that the temporary storage area is 

located between the transfer track and the railway track. 

Table 1 presents the travelling time of cranes to handle the 

containers. Total workload is 41 time units. Therefore, the 

working area of the first crane is from wagon number 1 to 

wagon number 5. The working area of the second crane is 

from wagon number 6 to wagon number 10. The workload 

of the first crane is 20. The workload of the second crane is 

21. Table 3 illustrates a solution for this example. The first 

part represents the working areas of the cranes. 

 

Table 1. An example of inbound and outbound containers. 

Container Type Train Wagon Workload  Container Type Train Wagon Workload 

1 Inbound 1 1 3  9    Inbound 1 9 3 

2 Inbound 2 1 2  10 Outbound 2 1 2 

3 Inbound 1 2 3  11 Outbound 1 2 3 

4 Inbound 2 3 2  12 Outbound 1 6 3 
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5 Inbound 1 5 3  13 Outbound 2 8 2 

6 Inbound 2 5 2  14 Outbound 2 8 2 

7 Inbound 1 6 3  15 Outbound 1 9 3 

8 Inbound 1 7 3  16 Outbound 2 9 2 

 

Table 2. Solution representation. 

Crane Boundary Job sequence 

1 5 1 2 11 6 5 10 3 4  

2 10 7 12 13 9 15 16 8 14 16 

 

Table 3. Numerical examples. 

No 
Number of 

trains 

Inbound/ 

Outbound Containers 

Number of 

cranes 

B&B SA 

Makespan, 

(LB/UB) 

CPU Time 

(sec.) 

Makespan 

(Std.) 

CPU Time 

(sec.) 

1 1 12/8 2 50.00 1 50.00 (0.00) 128 

2 1 16/16 2 66.00 417 66.00 (0.00) 165 

3 1 24/21 2 78.00 2348 78.00 (0.00) 222 

4 1 30/31 2 94.00/98.00 ** 96.00 (0.00) 279 

5 2 14/17 2 77.00/79.00 ** 79.80 (1.11) 149 

6 2 36/28 2 118.00/140.00 * 130.00 (0.00) 292 

7 2 49/48 2 152.50/192.00 * 171.45 (1.10) 409 

8 2 64/61 2 190.00/215.00 * 212.80 (2.12) 543 

9 3 25/23 2 111.00/138.00 ** 120.00 (0.00) 234 

10 3 51/46 2 183.00/242.00 * 211.80 (1.61) 408 

11 3 72/81 2 269.00/327.00 * 314.00 (5.48) 664 

12 3 97/97 2 323.00/369.00 * 384.15 (8.16) 933 

13 1 12/8 3 36.00 1201 36.00 (0.00) 165 

14 1 16/16 3 46.00 215 46.00 (0.00) 191 

15 1 24/21 3 50.67/54.00 ** 53.30 (2.36) 233 

16 1 30/31 3 62.67/64.00 ** 64.00 (0.00) 362 

17 2 14/17 3 49.33/53.00 ** 53.00 (0.00) 193 

18 2 36/28 3 77.00/97.00 ** 87.30 (2.64) 367 

19 2 49/48 3 101.00/126.00 * 114.70 (2.32) 562 

20 2 64/61 3 126.33/141.00 * 142.60 (2.64) 661 

21 3 25/23 3 72.67/91.00 ** 83.35 (2.18) 247 

22 3 51/46 3 118.33/152.00 ** 142.20 (3.14) 554 

23 3 72/81 3 178.33/217.00 * 211.70 (2.03) 866 

24 3 97/97 3 215.33/256.00 * 252.85 (7.14) 1133 

Note:  * Computation time exceeds 86400 seconds. 

       ** The computer is out of memory  

The numbers in this part denote the wagon numbers of the 

last right hand side areas area which was handled. The 

second and third parts show the work sequencing of cranes 

handling inbound and outbound containers, and the number 

denotes the container number. In Table 2, the inbound 

containers 2, 7 and 9, and the outbound containers 11, 12 

and 15, require re-handling. 

2. Neighborhood solutions 

Two operations are designed to generate neighborhood 

solutions. The first operation is a “zone operator”, which is 

used to determine a new working area for a crane. The  

 

 

 

 

second operator is “sequence operator” used to generate 

a new job sequence for the crane. If a random number in the 

range of (0, 1) is less than or equal to  , the first operation 

is chosen. Otherwise, the second operation is applied. In the 

zone operator, the boundary of a crane is first adjusted by 

adding randomly -1, 0 or 1. The containers that do not 

satisfy the boundary are assigned to other cranes. In the 

sequence operator, a pairwise interchange is carried out to 

adjust the job sequence, where two inbound containers or 

two outbound containers are randomly selected and 

swapped.  
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3. Acceptance criterion 

Once a neighborhood solution is generated, the 

following criterion is used to accept or reject it. Let 

   Q C Q NB    where C, NB and Q(*) are the 

current solution, neighborhood solution and makespan of 

solution (*), respectively. A neighborhood solution is 

accepted as the current solution if 0   or lT
r e



 , 

where r is a uniform random number in (0,1) and lT  

represents the current temperature. The cooling down 

function is the geometric update scheme introduced by 

Lundy and Mees (1986). 

 

V. NUMERICAL EXAMPLE 

In order to evaluate the performance of the SA, and the 

B&B algorithms, 24 problems were randomly generated by 

uniform distribution. The probabilities that a wagon carries a 

container (an inbound or an outbound container) are 0.25, 

0.50, 0.75 and 0.95, respectively. The examples were tested 

on a computer with an AMD Athlon CPU 3.00 GHz, and 4 

GB memory, and the algorithms are coded in Java. The 

parameters of SA are chosen,   as 0.3, 0T  as 20,   as 

0.999999819 and  as 0.001. In Korea, rail stations usually 

have three rail tracks, while each train contains an average 

of thirty-three wagons. Table 3 shows the mean values of 

makespans, standard deviations and computation times of 

the 24 problems, as obtained by these methods; the branch-

and-bound algorithm, the simulated annealing algorithm. 

For small-sized problems, all methods gave the same results. 

For large-sized problems, the branch-and-bound could not 

return an optimal solution, while the SA algorithm returned 

optimal solutions within 20 minutes.  

 

VI. CONCLUSION 

In this paper, we considered a multiple crane scheduling 

problem in which working areas are assigned to cranes and 

the job sequence of each crane is considered. Moreover, the 

dual-cycle operation of cranes was incorporated. The 

makespan of cranes was used as an optimization criterion, 

and a simulated annealing algorithm was proposed to find 

near optimal solutions. The results of this algorithms were 

compared with the results from the B&B. We investigated 

the performance of algorithms using numerical examples. In 

generally, the simulated annealing algorithm can give the 

results in several minutes. Further research may include the 

study of rail crane scheduling problems with the additional 

consideration of train timetables, or with the integration of 

truck scheduling. 
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