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Abstract

This paper derives the sufficient conditions for controllability of stochastic impul-
sive quasilinear neutral integrodifferential systems with time varying delays in Hilbert
spaces. The results are obtained by using semigroup theory, evolution operator and
fixed point technique. An example is provided to illustrate the obtained results.
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1 Introduction

The purpose of this paper is to study the controllability of stochastic impulsive quasilinear
neutral integrodifferential time varying delay systems with nonlocal conditions which is of

the form
d[:c(t) = g(t,x(t)@(al(t))a ce ,:c(am(t)))}
= [At e + £ (1, 2(), 2(B0), -+ @ (Bar (D)), Ot At s, (Ba(s)))ds)

—I—Bu(t)} dt + a(t, x(t), o(y1(t)), - ,;r(”yq(t)))dw(t), teJ:=10,a],t # 7,
Ax(my) = a(rd) —a(ry) = Ilz(r))), k=1,2,---,m,
BO) + Hltwto tya(t).alia). - alty) = zo. w

where 0 < t; <1y <--- <1, <a (p € N). Here, A(t,x) is the infinitesimal generator of a
Cy- semigroup in H and B is a bounded linear operator from U into H. The state variable
x(+) takes values in a real separable Hilbert space H with innerproduct (-,-) and norm || - ||
and the control function u(-) takes values in L?(.J,U), a Banach space of admissible control
functions for a separable Hilbert space U. Let K be another separable Hilbert space with
inner product (-, )k and ||-|| k. Suppose {w(t) }+>0 is a given K-valued Wiener process with a
finite trace covariance operator ¢ > 0. We use the same notation ||- || for the norm £(K, H),
where L(K, H) denotes the space of all bounded linear operators from K into H. Further
g: JxH" - H f:JxH"' = H h:AxH— H,o:Jx H" — Lo(K,H) are
measurable mappings in H-norm and Lo (K, H) norm respectively, where Lo (K, H) denotes
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the space of all )-Hilbert-Schmidt operators from K into H will be defined in Section 2
and A = {(t,s) € J xJ :s < t}. The delays a;(t), B;(t), vx(t) are continuous scalar
valued functions defined on J such that a;(t) <t, B; <t, v, <tfori=1,2,---,m, j=
1,2,-++,n, k=1,2,---,q . Here, the nonlocal function H : PC[JP x H? : H| — H and the
impulsive function I, € C(H,H) (k = 1,2,--- ,m) are bounded functions. Furthermore,
the fixed times 74 satisfies 0 =19 < 1, < 0 < -++ < 7, < @, .ZB(T;) and x(7, ) denote the
right and left limits of z(t) at t = 7. And Az(7x) = (7 ) — (7}, ) represents the jump in
the state z at time 73, where I}, determines the size of the jump.

Neutral delay differential equations (NDDEs) are often used to describe the dynamical
systems which not only depend on present and past states but also involve derivatives with
delays. Practical examples of neutral delay differential systems include the distributed net-
works containing lossless transmission lines [18], population ecology [18], processes including
steam or water pipes, heat exchanges [17] and other engineering systems [17]. NDDEs are
considered as a branch of delay differential equations (DDEs). DDEs can provide us a
realistic model of many phenomena arising in several areas of applied mathematics. For in-
stance, infectious diseases, population dynamics, physiological and pharmaceutical kinetics
and chemical kinetics, the navigational control of ships and aircrafts and control problems.

DDEs have been used for many years in control theory and only recently have been
applied to biological models. In biological and mechanical processes we find often physical
delays. Delay equations are used to make the mathematical model closer to the real phe-
nomenon. Some examples of delay mathematical models in biology are population dynam-
ics, ecology, epidemiology, immunology, physiology, neurology. Hence the theory of neutral
delay differential equations is even more complicated than the theory of non-neutral delay
equations. In the last few decades, there has been increasing interest in the study of delay
differential equations and neutral delay differential equations for several investigators. The
dynamics of many evolving processes are subject to abrupt changes, such as shocks, har-
vesting and natural disasters. These phenomena involve short-term perturbations, whose
duration is negligible in comparison with the duration of an entire evolution. Systems with
short-term perturbations are often naturally described by impulsive differential equations
(for example, see [20, 26]). Stochastic differential and integrodifferential equations have at-
tracted great attention due to their applications in characterizing many problems in physics,
biology, mechanics and so on.

Quasilinear evolution equations are encountered in many areas of science and engi-
neering. Several authors have discussed the existence of solutions of abstract quasilinear
evolution equations in Banach spaces [1, 12, 15, 16, 23, 24]. Recently, the study on con-
trollability of quasilinear systems has gained renewed interests and only few papers have
appeared (see [3, 4, 6, 8]). The qualitative properties such as existence, uniqueness and
regularity of solutions of functional and neutral functional differential equations with nonlo-
cal conditions have been studied by some researchers [2, 13, 14]. Lin and Liu [21] discussed

the semilinear integrodifferential equations with nonlocal Cauchy problem. Balachandran
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et al. [5] investigated the existence results for abstract neutral differential equations with
time varying delays. The nonlocal Cauchy problem for delay integrodifferential equations
of Sobolev type in Banach spaces was discussed by [7]. Balasubramaniam et al. [9] derived
the existence of solutions for nonlocal neutral stochastic functional differential equations.
Stochastic controllability and approximate controllability of nonlinear stochastic systems
with multiple delays and timevarying delays were studied by [19, 22]. Subalakshmi and
Balachandran [27] discussed the approximate controllability of nonlinear stochastic impul-
sive integrodifferential systems in Hilbert spaces. Upto now, there is no work reported on
the controllability of stochastic impulsive quasilinear neutral integrodifferential timevarying
delay systems and this fact is the motivation of our present work. In this paper, we make

an attempt to fill this gap by studying the controllability of the system (1.1).

2 Preliminaries

Let (2, F, P;F) {F = {F:}+>0} be a complete filtered probability space satisfying that Fy
contains all P-null sets of 7. An H-valued random variable is an F-measurable function
x(t): @ — H and a collection of random variables S ={z(t,w):Q— H \t € J} is called a
stochastic process. Usually, we suppress the dependence on w € Q and write z(t) instead
of z(t,w) and z(t) : J — H in the place of S.

Let {e,}52, be a complete orthonormal basis of K. Suppose that {w(t) : ¢ > 0}
is a cylindrical K-valued wiener process with a finite trace nuclear covariance operator
Q > 0, denote Tr(Q) = >_.72 ;A\ = A<oo, which satisfies that Qe, = A\pen. So, actually,
w(t) = 300 VAnwn(t)e,, where {w,()}52, are mutually independent one-dimensional
standard Wiener processes. We assume that F; = o{w(s) : 0 < s < t} is the o-algebra
generated by w and F, = F. Let ¥ € L(K, H) and define

0
)13 = Tr(TQT*) = " |V A Ten|.
n=1

If ||¥|lo < oo, then ¥ is called a @-Hilbert-Schmidt operator. Let Lo(K, H) denote the
space of all Q-Hilbert-Schmidt operators ¥ : K — H. The completion Lo(K, H) of L(K, H)
with respect to the topology induced by the norm || - || where ||\I/||%9 = (U, T) is a Hilbert
space with the above norm topology. For more details in this section refer Prato [10].

The collection of all strongly measurable, square integrable H-valued random variables
denoted by L2(Q, F, P; H) = L2(Q, H), is a Banach space equipped with norm ||z(+)||z, =
(E||x(,w)||§{)%, where the expectation E is defined by E(h) = [,h(w)dP. Similarly,
L5 (9, H) denotes the Banach space of all F;-measurable, square integrable random vari-
ables, such that [ [|z(t, -)||%2dt < 00. Denote Jy = [0,71], Jx = (7, Tkt1], K = 1,2,--+ ,m,
and define the following class of functions:

PC(J, L2, H))={x : J — L3 : x(t) is continuous everywhere except for some 75 at which
z(r, ) and 2(7;") exists and z(7;, ) = z(74), k = 1,2,3,--- ,m} is the Banach space of piece-
I

wise continuous maps from J into L£2(, H) satisfying the condition sup,c ; E||z(t)||* < oco.
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Let Hy = PC(J, L2) be the closed subspace of PC(J, L] (2, H)) consisting of measurable,
Fi-adapted and H-valued processes x(t). Then PC(.J, L2) is a Banach space endowed with
the norm

|zlfpc =sup {Bllz(®)|* : © € PC(J, L2)}.
teJ

Let H and Y be two Hilbert spaces such that Y is densely and continuously embedded
in H. For any Hilbert space Z the norm of Z is denoted by || - ||z or || - ||. The space of all
bounded linear operators from H to Y is denoted by B(H,Y) and B(H, H) is written as

B(H). We recall some definitions and known facts from [25].

Definition: 2.1 Let S be a linear operator in H and let Y be a subspace of H. The operator
S defined by D(S) = {x € D(S)NY : Sz € Y} and Sz = Sz for x € D(S) is called the
part of S inY.

Definition: 2.2 Let Q be a subset of H and for every 0 <t < a and b € Q, let A(t,b) be
the infinitesimal generator of a Cy semigroup Syp(s),s > 0 on H. The family of operators
{A(t,b)}, (t,b) € J x Q, is stable if there are constants M > 1 and w such that

p(A(t, b)) D (w,00) for (t,b) € J x Q,
k
HHR(A : A(tj,bj))H < MP—-w)* for A>w
j=1

and every finite sequences 0 < t; <o < --- <t < a, by € Q,1 < j < k. The stability of
{A(t,b)}, (t,b) € J x Q, implies [25] that

k k
H HSt].ﬁj(sj)H < M exp {szj} for s; >0
j=1 j=1

and any finite sequences 0 <t1 <tp <--- <1 <a, b; €Q,1<j<k. k=1,2,---.

Definition: 2.3 Let S, (s), s > 0 be the Cy semigroup generated by A(t,b), (t,b) € J x Q.
A subspace Y of H is called A(t,b)- admissible if Y is invariant subspace of Sip(s) and the

restriction of Syp(s) toY is a Cy- semigroup in'Y .

Let @ C H be a subset of H such that for every (¢t,b) € J x Q, A(t,b) is the infinitesimal

generator of a Cy-semigroup Sip(s),s > 0 on H. We make the following assumptions:
(E1) The family {A(t,b)}, (¢,b) € J x @ is stable.

(E2) Y is A(t,b)- admissible for (¢t,b) € J x Q and the family {A(t,b)}, (t,b) € J x Q of
parts A(t,b) of A(t,b) in Y, is stable in Y.

(E3) For (t,b) € J x Q, D(A(t,b)) DY, A(t,b) is a bounded linear operator from Y to H
and t — A(t, b) is continuous in the B(Y, H) norm || - || for every b € Q.
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(E4) There is a constant L > 0 such that
IA(L,b1) — A(t, b2)lly < Lliby — bol |z
holds for every b1,bo € Q and 0 <t < a.

Let @ be a subset of H and let { A(¢,b)}, (¢,b) € J xQ be a family of operators satisfying the
conditions (F1) — (F4). If x € PC(J, L2) has values in @) then there is a unique evolution
system U(t, s;x),0 < s <t < a in H satisfying (see [25])

(1) U@, s;2)|| < Me*t5) for 0 < s <t < a, where M and w are stability constants.
(i) %U(t,s;:v)y = A(s,z(s))U(t,s;2)y for yeY, 0<s<t<a.
(iii) %U(t, ssx)y = =U(t, s;2)A(s,z(s))y for yeY, 0<s<t<a.

Definition: 2.4 [11] A stochastic process x is said to be a mild solution of (1.1) if the
following conditions are satisfied:

(a) x(t,w) is a measurable function from J x Q to H and x(t) is F; -adapted,
(b) E|lz(t)||* < oo for each t € J,

(6) Aa(m) = o(rF) — o(ry) = Te(e(rD)), b=1,2,- ,m,

(d) For each u € L5 (J,U), the process x satisfies the following integral equation

z(t)=U(t,0;x) [.1’0— H(ty, - by, z(t1), - ,z(ty)) —g(O, z(0), (1 (0)), - - ,w(am(())))]
+g(t,x(t), z(a1(t), -, z(am(t))) + /0 U(t, s;x)Bu(s)ds

-l—/ Ult, s;2)A(s, z(s))g(s, (s), z(a1(s)), - -+, x(am(s)))ds
0

S

+/0tU(t’s;x)f(s,x(s),x(ﬂl(s))’... ,x(ﬁn1(3)),/0h(S,n,x(ﬂn(n)))dn)ds
+ /0 t Ut 5:2)0 (5, 2(), 2(11()), +  3((5)) ) dao(s)

+ Z Ut, i) Ip(2(7, ), forae teJ,
O<p <t

2(0) + H(tty, -ty a(t),a(ta), - a(t,)) = o € H. (2.1)

Definition: 2.5 The system (1.1) is said to be controllable on the interval J, if for every
initial condition xo and x1 € H, there exists a control u € L*(J,U) such that the solution
x(+) of (1.1) satisfies x(a) = x1.

Further there exists a constant Lg > 0 such that for every z,y € Hz and every § € Y we
have

U, s;2)5 — Ut, 899 < Loa®||513 |z — ylpe-

In order to establish our controllability result we assume the following hypotheses:
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(H1) A(t,x) generates a family of evolution operators U(t,s;z) in H and there exists a

constant Ly > 0 such that

|U(t,s;x)||* < Ly for 0<s<t<a, v€Ho.
(H2) The linear operator W : L?(J,U) — H defined by
a
Wu:/ Ula, s; x)Bu(s)ds
0

is invertible with inverse operator W1 taking values in L?(J,U) \ kerW and there

exists a positive constant Ly, such that
|BWH|? < L.
From (H3)-(HT7), let Z be taken as both H and Y.

(H3) (i) The function g : J x Z™"! — Z is continuous and there exist constants L, > 0,
Eg > 0 for t,s € J and x;,y; € Z, 1 = 1,2,--- ,m + 1 such that the function
A(t, z)g satisfies the Lipschitz condition:

EHA(t,.’L’(t)) g(ta I1,T2,: ,merl) - A(tvy(t)) g(ta Y, Y2, aym+1)||2
m+1

< Lo 3 Nl —il?),

and ]39 = SUD¢e g “A(t’ O)g(ta 0, ¢x vO)HQ'
(ii) There exist constants L; > 0, Ly > 0 and L3 > 0 such that

E“g(t’xl,x2a"' ,.’L’m+1) - Q(S,ylay%“' aym+l)H2
m—+1
< Iy “t — 52+ Z llx; — y¢||2} and
i=1
m+1
E“g(t,.’lfl,CL’Q,“' 7IM+1)||2 S L2 Z ||xll|2+L3
=1

(H4) The nonlinear function f : J x 2% — Z is continuous and there exist constants
Lig >0, Ef >0forteJand z;,y; € Z,j=1,2,--- ,n+ 1 such that

n+1

E“f(t,l’l,l‘z, S 7$n+1) - f(taylay2a e ayn+1)”2 S Lf [Z ||$J - yj||2:|
i=1

and f/f = SUDy¢c 5 | f(t,0,--- ,0)”2-

(H5) The nonlinear function h : A x Z — Z is continuous and there exist positive constants
Ly, Ly, for ,y € Z and (t,s) € A such that

t 2
EH / [h(t,s,:v) — h(t,s,y)}ds” < Lpllz — y||2
0

and Ly, = sup gen || fy A(t, 5, 0)ds]|?.
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(H6) The function o : Jx 2971 — L;(K, H) is continuous and there exist constants L, > 0,
Lo >0 for t € J and Try € 2, k=1,2,---,q+ 1 such that

q+1
Bllo(t, 21,2, »2q01) = oty o) B < Lo D e — vl

k=1
and L, = sup;e; [|o(t,0,---,0)]|.
(H7) The nonlocal function H : PC(J? x ZP : Z) — Z is continuous and there exist
constants Ly > 0, Ly > 0 such that
E|H(ty, - tp,x(ty), -, z(ty)) = Htn, -ty y(t), - y())? < Lillz — g%,
E|\H(t1,t2,- - st a(t1), a(t2), - 2 (tp))|® < L.
(H8) Iy : Ho — Hy is continuous and there exist constants 5 > 0, Bk > 0 for z,y € Z such

that
E|Ix(z) — L@)|® < Bellz — yll?, k=1,2,---,m

and B = I(0)]|%, k=1,2,---,m.

(H9) There exists a constant r > 0 such that

9{Lu(||:ro||2 + L) + Lu[2La(m + ) (||zo|* + Lar) + Ls] + La(m + 1)r + Lg
+2a2 Ly [Lg(m + 1) + Ly +a®LyG+2a° Ly (L ((n + 2Ly)r + 2Ly) + Ly

+ 2aLyTr(Q)[Ly(q + 1)r + L] + 2mLy [ Z Brr + ng} } <7 and
k=1 k=1

v = 9{(1 +16a2Ly Ly ) (N1 + N + Ny + Ny + N + N6)+2a3ng}
where N1 = Loa?||xo|® + 2[L0a2I~/H + LyLy]
Ny = 2[L0a2 [2Lo(m+1)(|lwo|>+Ea) +Ls] + Lur Ly (m + 1)LH} Y Li(m+ 1),

N

N3 = 2a%|2aLo(Lg(m + 1)r + Lg) + Ly Lg(m + 1)},

[\

Ny = 2a®|2aLo(Ls((n+ 2Lp)r +2Lg) + Ly) + LyLg(n + Lh)},

N5:2(1

—

20LoTr(Q)(Lo(a+ )1 + Lo) + LuTr(Q)(a + 1) Lo .

Ng = 2m 2(12[10(2[3]@7“ + ng) + Ly Zﬁ;;| .
L k=1 k=1 k=1

3 Controllability Result

Theorem: 3.1 If the conditions (H1) — (H9) are satisfied and if 0 < v < 1, then the

system (1.1) is controllable on J.
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Proof: Using the hypothesis (H2) for an arbitrary function z(-), define the control
u(t) = w1t |:.ZL‘1 —U(a,0;x) [:EO— H{f1%0% hgs 2l )57 == 5 2{Ep)) —g(O,x(O), e ,x(am(())))}
—g(a,z(a),z(a1(a)), - ,:E(am(a))) — Z Ula, 73 2) In(z(7), )

o<t <a

_/Oa Ula, s;2)A(s, 2(s))g(s, 2(s), z(a1(s)), - -+, z(am(s)))ds

_/0U(a,s;m)f(s,:v(s),m(ﬁl(s))’... ’m(ﬁn_l(s)),/oh(s,n,x(ﬁn(n)))dn)ds

- [ Uasialo(s.ale)atns). - oo due)] o) (3.1)
0

Let Y, be a nonempty closed subset of Hs defined by
Vo ={z: 0 € Mol Bllz(t)|* < r}.
Consider a mapping ® : ), — Y, defined by
(@2)(t) =U(t,052) [wo—H(t1, -+ ,tp,x(tr), -, 2(tp)) —9(0,2(0), 2(01(0)), -, 2(am(0)))]

#6302 ). a(an®) + [ Ul 50 Buls)ds

+/0t Ult, s;w)A(s,l‘(s))g(s,x(s),x(al(s)), e ,m(am(s)))ds

+ [V (526030160 wlBaa (1) [ om0t

+f Ut s (5,006 0(n (6, alru(s))due) + 3 Ultms o) Tularp),

Ot
We have to show that by using the above control the operator ® has a fixed point. Since
all the functions involved in the operator are continuous therefore ® is continuous. For

convenience let us take
V{(p,x) =BW ! [xl —U(a,0;z)[zo— H(ty, - tp,x(tl) e az(ty) —g(0,2(0), -+, z(am(0)))]
—g(a,z(a),z(a1(a)), - ,z(amla Z Ula, mi; ) I(x(7y, )

O<mp<a

— /Oa U{a, s;x)A(s,w(s))g(s, x(s), x(ar(s)), - ,m(am(s)))ds
_ /OQU(a, s;m)f(s,x(s),x(ﬁl(s))’ w2 Ba1(8)), /Osh(s,n,x(ﬂn(n)))dn)ds
= [ U@ (5,56 w16, ) dws)] 00

0
From our assumptions we have

E|V(n2)|?* < 9LW{||331||2 + Ly(llzoll* + Lar) + Lu[2La(m + 1)(I|zol|* + L) + Ls]
+Lo(m~+1)r+L3+2a* Ly [Ly(m~+1)r+Lg+2a Ly[L s ((n+2Ly)r+2L4)

+Lg] + 20LuTr(Q)[Lola + 1)r + Lo +2mLu | 3 B + > B } = 6.

k=1 k=1
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and
E|lV(wz) — Vuy)|? < 8LW{L0a2|lm0||2 +2[Loa2Ly + LyLy] + Li(m + 1)
+2[Loa? [2La(m-+ )0l “+Em) +15] + Ly Ly (m + 1) L |
+2a? [2aL0 (Lg(m + 1)r + Ly) + Ly Lg(m + 1)}
oK, [2aL0 (Lf((n +2Lp)r + 2I~/h) + if) + LyLs(n + Lh)}

+2a [QaLOTr(Q) (Lolg + 1)1 + Lo) + LuTr(Q) (g + 1)LU}
+2m [QazLo ( Zﬂkﬂ“ + Zﬁk) + Ly Zﬁk} }||9U —y|%
k=1 k=1 k=1
First we show that the operator ® maps ), into itself. Now
E|l(@z)(1)|]? < 9{Ey|U(t, 0;2) w0 — H{tr,ta, - , by 2(tr), 2(t2), - 5(tp))
—g(O, .’L‘(O), e ,x‘(am(O)))] H2 + EHg(t? Ll?(t), x(al(t))a T x(am(t))) H2
+E|| /0 Ut 5:2) A(s, 2(5))g (s, 2(5), 2(01()), -+ 2(am(s)))ds]|”
t s
—i—EH/OU(t,s;:E)f(s,:E(s), z(B1(s)), -+, x(Bn_1(s)), /Oh(s,n,x(ﬁn(n)))dn>ds“2
+B| [ Uit szl (5,26 3tn(). (o) )du(o)|

+EH/0 Ut m2)V(w2)dpl + B[ S Ut ms o) Iu(w(m)) }

o< <t
< 9{Lulllwoll® + L) + LuRLa(m + (2ol + L) + L] + La(m + Dy
+Ls + a*LyG + 2a° Ly [Lg(m + 1)r + Ly + 2a* Ly [L((n + 2Ly)r + 2Ly,)

+L4] + 2LuTr(Q)Lo(a + Vr + Lol +2mLu | 3" Br + 3 B }
k=1 k=1

From (H9) we get E||(®z)(t)||> < r. Hence ® maps Y, into Y,. Let ,y € Y, then
Ell(@2)(t) - (@n)I? < 9{B||U(t,0:0)[m0 — H(tr, -ty (), -+ ,2(t))]

U009 [0~ H(tr, - tpyta), ()]

+E||U(t,0:2)9(0,2(0), 2(01(0)) -+, (@ (0)))
U (£0:)9(0.4(0). (01 (0)). - - (01|
+B|g(t.a(®). 2l ®). - a(an(®))
~g(t.y(0).ylea(). - lam()|
+8] [ 00550005 2(6)g(5:2(6). 201 6)). -+ alam(s))

9
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Ut 5 9)Als. 9()a (5. 9(). y{0r (). -yl (5)) s

+EH /Ot [U(t, w2)V{p, ) — Ut s y)Vi{p, y)}dMHQ

+8] [ [06s5007 (560,106, 2 Gs(o). [0,
Ut 559)f (5.9 0.+ (s ) B, 08 0)n) |
+8] [ [016 5521005, 206), 20106 o)

Ut 590,541 (5)). -+ u(p(s)) | duo(s)|

+E| > [U(t,m;x)fk(x(i))—U(t7Tk’ M i(y(m, ”‘}

O<mp <t
E|(®2)(t) — (2y)(®)|* < 9{(1+ 16a’LyLw)(N1 + Na + N3 + Ny + N5 + Ne)

+2€13L0g}||37 —y|?

vz —yll*.

IN

Since v < 1, the mapping ® is a contraction and hence by Banach fixed point theorem there
exists a unique fixed point z € ), such that (®z)(¢t) = z(¢). This fixed point is then the
solution of the system (1.1) and clearly, z(a) = (®z)(a) = 21 which implies that the system
(1.1) is controllable on J.

4 Example

Consider the following partial integrodifferential equation of the form

3
O(Z(t,y) — cos z(sint,y)) = <803 (t,y) +2(t,y) éZz(t,y) + ult,y)

sin z(t,y) t z(sin s, y)
+(1 —|—t)(1 —|—t2) +-/0 (1 —i—t)(l +t2)2(1 +8)2d8> ot
+e t(t+ 1)z(sint, y)dw(t), t # 7,
z2(t,0) = z(t,n)=0, teJ:=]0,q],

00) + 3 [ kOO =), 0sy<w @)
=0
Bilin, = L) = (@lz@)] +7) 7% k=12 ,m.

where p is a positive integer and 0 < t; < tp < -+ < t, < a <7, z(y) € H = L*([0,7])
and k(y, &) € L3([0,7] x [0,7]). Here ay,k = 1,2,--- ,m are constants. For every real s we
introduce a Hilbert space H*([0,n]) as follows [25]. Let z € L?([0,]) and set

It = ([ 0+ rpera) "
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where 2 is the Fourier transform of z. The linear space of functions z € L?([0, 7]) for which

||z||s is finite is a pre-Hilbert space with the inner product

(z,9)s = (/Oﬂ(l + 52)33(5)%6[5) 1/2'

The completion of this space with respect to the norm || - ||s is a Hilbert space which we
denote by H*([0,7]). Tt is clear that H([0,7]) = L?([0,x]).

Take H = U = K = L*([0,7]) = H°([0,x]) and Y = H*([0,7]),s > 3. Define an
operator Ag by D(Ag) = H?([0,]) and Agz = D3z for 2 € D(Ag) where D = d/dy. Then
Ay is the infinitesimal generator of a Cy-group of isometries on H. Next we define for every
v € Y an operator Aj(v) by D(A;(v)) = HY([0,7]) and z € D(4;(v)), A1(v)z = vDz.
Then for every v € Y the operator A(v) = Ag + A1(v) is the infinitesimal generator of Cy
semigroup U(t,0;v) on H satisfying ||U(t,0;)| < e for every 8 > cg||v||s, where ¢q is a
constant independent of v € Y. Let ), be the ball of radius » > 0 in Y and it is proved
that the family of operators A(v),v € ), satisfies the conditions (E1) — (E4) and (H1)
(see [25]).

Put x(t) = z(¢, ) and u(t) = p(t,-) where p: J x [0, 7] — R is continuous,

F(a 02600, [ it a(36)as) ) = g s [ 2 g,
ot (0, s ONE) = !t + Defsint.y),
olt,2(t), 2(@(O)) = cosz(sint.y),

p ™
Hitne tpalt) o)) = Y [ Koot 0d
i=0
With this choice of A(v), f,g,h,o, H, I, B = I, the identity operator and w(t), one dimen-
sional standard wiener process, we see that (4.1) is an abstract formulation of the system
(1.1). Further we have

sin z(t, y) /t z(sin s, y) » 1 12l
s — 2]
14+8)(1+1t2) Jo 1+)1Q+t3)3(1 + 5)? T 1412
Assume that the operator W : L?(J,U)/KerW — H defined by

Wu :/ Ula,s;x)p(s,-)ds
0

has an inverse operator and satisfies condition (H2) for every z € ).

Further other assumptions (H3) — (H9) are obviously satisfied and it is possible to choose
the constants «y, in such a way that the constant v < 1. Hence, by Theorem 3.1, the system
(4.1) is controllable on J.

Acknowledgement The first author is thankful to UGC, New Delhi for providing BSR-
Fellowship during 2010.
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