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1.  Introduction 

The concept of Sobolev spaces are well understood on some compact and complete Riemannian manifolds 

and on locally compact groups such as the Heisenberg group, see e.g. [7, 8, 9, 13] and [14]. In this paper, we 

are interested in Sobolev spaces in a general setting as a tool for a better understanding of pseudodifferential 

operators such as the Laplacian on Riemannian manifolds, [1, 12]. We shall show that the resolvent of the 

Laplacian is compactly embedded on the torus. 

We begin by defining the Sobolev space of integer order on smooth Riemannian manifolds and 

proceed to review the Sobolev embedding theorem on manifolds. Afterwards, we present the so-called 

Rellich-Kondrakov theorem on smooth compact torus which is the main result of the paper. 

 

2.  Materials and Methods 

We gather the concepts of Sobolev space, Sobolev embedding theorems especially for Riemannian manifolds 

and the Rellich-Kondrakov theorem in this section as tools for the proof of compact embedding theorems of 

the Laplacian resolvent in the next section. Proofs of some of the theorems may be presented for purpose of 

completeness. 

 

2.1  Sobolev Space on Riemannian manifold 

To begin with, let   be an open subset of nR  and k  an integer; 1p  a real. Let R:u  be a 

real-valued smooth function. Following the works of [1, 10, 2, 6, 5, 3], let  
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Abstract: This paper proves that the domain of the Laplacian, , on a closed Riemannian manifold, ),,( gM  

is compactly embedded in ).(2 ML  Particularly, the resolvent of the Laplacian, ,1)( 1  is shown to be 

compactly embedded on the torus. 
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and   is a multi-index. We define the following Sobolev spaces.   

    • 
p

kH  is the completion of }<||:||)({ ,  

pkuCu  and  
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Theorem 2.1 [1].  For any ,  k  integer and 1;p  .= p

k
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k WH   

Now let ),( gM  be a smooth Riemannian n -dimensional manifold. For an integer k  and  

 RMu :  

smooth, we denote by uk  the 
thk  covariant derivative of u  and by || uk  its norm. Specifically,  
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and so on; where we recognize  =2
 as the Laplacian on the manifold ),( gM  and  
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is the Christoffel symbol, see e.g [11, 6]. Suppose for now that nM R=  with the Euclidean metric, we have  
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Besides, in local coordinates, the norm of uk  is expressed as  
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To define Sobolev space on ),,( gM  we set  
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k  we have  
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 where dxggdv ij )(det=)(  and the Lebesgue volume measure of nR  is dx . 

 

Definition 2.2 The Sobolev space )(MH p

k  is the completion of )(MA p

k  with respect to p
k

H
||||   defined in (3).  

One can look at )(MH p

k  as a subspace of )(MLp
 where for ),(MLu p  we write  
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Also observe that when 2,=p  then  
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with the associated inner product ).(,=,
0=

gdvvuvu jj

M

k

j
   

 

Definition 2.3 [6]. A real-valued function u  on M  is called a Lipschitz function (or Lipschitzian) if there 

exists a constant 0>c  such that for ,, Myx   ).,( |)()(| yxdcxuyu g   

We now look at smooth Riemannian manifolds. The next theorem is very essential in this regard.  

 

Theorem 2.4 [2] Let ),( gM  be a smooth Riemannian n -dimensional manifold and let  

RMu :  be a Lipschitz function on M  with compact support. Then, )(1 MHu p  for any 1.p  

In particular, if M  is compact, any Lipschitz function in M  is also in )(1 MH p
 too.  

The property of Sobolev embedding on smooth Riemannian n -dimensional manifold is summarised in the 

next theorem. We follow Aubin [2] and Hebey [10] to present a proof of the next theorem here for a purpose of 

completion. We denote the space of test functions on a Riemannian manifold M  by )(:=)( 0 MCM D  and 

its dual space by ).(' MD  

 

Theorem 2.5  Given that ),( gM  is a smooth n -dimensional complete Riemannian manifold, then )(MD  

is dense in )(1 MH p
 for any 1.p   

Proof.  Let RR:f  be defined by  
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 Let 1 );(1  pMAu p
 real. For ,, Myx   set )),(()(=)( jyxdfyuyu gj   where gd  is the distance 

associated to g  and .Zj  By theorem 2.4 above, )(1 MHu p

j   for any .j  Now, since 0=ju  outside 

any compact set ,M  we have that for any ;j  ju  is the limit in )(1 MH p
 of some sequence of functions 

in ).(MD  So, if  
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Consequently, we choose )(MD  such that 1=  where 0.ju  So independently, we have for any ,j   
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Hence, )()( 1 MHuu p

j   as .j  That is to say, u  is the limit in )(1 MH p
 of some sequence in 

).(MD   

 

2.2  Sobolev Embedding 

Given two normed vector spaces )||||,( EE   and )||||,( FF   with ,FE   we say that E  is continuously 

embedded in F  denoted by ,FE°  if there exist some constant 0>c  such that for any ,Ex  we have 

.|||||||| EF xcx   We demonstrate this concept for compact smooth Riemannian n -dimensional manifolds. 

First, note that the embedding is said to be compact if bounded subsets of )||||,( EE   are pre-compact 

(relatively compact) in ).||||,( FF   Clearly, if the embedding FE°  is compact, it is continuous; see e.g. [1, 2, 

15, 10, 11].  

 

Theorem 2.6  Let ),( gM  be a compact smooth Riemannian n -dimensional manifold. For any real 

numbers pq <1  and integers km <0  satisfying ,
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Proof.  It is enough to prove that 
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1 ( ) n nH M L   is valid since for  
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Now since M  is compact, it can be covered by a finite number of charts Nmmm ,1,=),( U  such that for any 

,m  the components ijg  of g  in ),( mm U  satisfy  
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2

1
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as bilinear forms where ij  is the usual metric on .nR  The constant 2=c  can be chosen for convenience. 

Again, let )( m  be a smooth partition of unity subordinate to ).( mU  For any ),(MCu   we have  
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for any .m  Consequently, for any ),(MCu    
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which gives the result.  

 

2.3  Rellich-Kondrakov theorem 

Now, we are set to present the Rellich-Kondrakov theorem (which may also be called Rellich theorem for 

simplicity).  

 

Theorem 2.7  Let ),( gM  be a compact smooth Riemannian n -dimensional manifold. For any integers 

1; 0;  mj  and real numbers pq  1,  such that ,1
mqn

nq
p


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is compact. In particular, for any )[1,nq  real and any 1p  such that ,
11

>
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nqp
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1 ( ) ( )q pH M L M  is compact.  

To prove the Rellich theorem, we need the following lemma.  

 

Lemma 2.8  Let   be a bounded open subset of )[1, ; nqn R  real such that .
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0,1( ) ( )q pH L    is compact; where )(0,1 H  denotes the closure of ).()( 1  qHD   

 For proof, one can see Aubin [2]. Next is the proof of theorem 2.7.  
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Coming back to the inequality satisfied by the ,s

ijg  one gets for any ,s  )( ms f  is a Cauchy sequence 

in ).(MLp
 But for any ,, 21 mm   
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where p||||   denotes the pL -norm. Hence, )( mf  is a Cauchy sequence in ).(MLp
 This proves the theorem.  

Corollary 2.9 The embedding 
1 2 1 2

0 1 1( ) ( ) ( ) ( )H M H M H M L M    is compact.  

  

Proof.  Follows from the Rellich-Kondrakov theorem proved in lemma 2.8.  

 

3.  Results and Discussion 

The compactness of 
11)(   on ),( gM  is more conveniently discussed on Fourier space, [15, 3] and [4]. 

So we continue the discussion on the Sobolev space. The Sobolev space )( nsH R  is defined by  
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Now, define 
nnnn S )(=/2= 1ZRT   to be the n -dimensional unit torus. A function 
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via Fourier series as  
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For any function ),( n'u TD  we can write  
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So, it is now clear that )( nCu T  if and only if û  is a rapidly decreasing function in .nZ  That is, for 
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By duality, )( n'u TD  provided û  is polynomially bounded function, i.e.  
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Let T  defined by 
11)(= T  be the Laplacian resolvent on )(2 nL T  where we know that  

  and )()(: 22 nn lL TTF   

 ;)||(1= 121 FF   T  

 1.||=||T  

 

The next theorem is the main result of this work.  

 

Theorem 3.1 T is a compact operator on ).(2 nl T   

Proof.  It enough to show that T  is the limit of finite rank operators. To do this, define  
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 Therefore, 
11)(= T  is compact in ).(2 nl T   

 

Another result of the Rellich-Kondrakov theorem for the torus is the next theorem.  

 

Theorem 3.2 Suppose T  is a self-adjoint operator (or has self-adjoint extension) with compact resolvent, 

then T  has discrete spectrum.  

Proof.  It is straightforward to see that  
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We see that as 0,k  k  which confirms the compactness of the resolvent 
1)id( T  and that T  

has discrete spectrum }.
)id(
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



  

 

4.  Conclusion 

The paper has given a proof that the Laplacian resolvent operator is compact on the unit torus by means of the 

Fourier transform. We further found that given a compact Riemannian manifold, ),( gM , that the embedding 

1 2 1 2

0 1 1( ) ( ) ( ) ( )H M H M H M L M    is compact. 

For the Laplacian resolvent, ,1)( 1  we consequently showed that as a compact operator on the 

torus, it has discrete spectrum. Thus, 
11)(   satisfies the Rellich-Kondrakov theorem on .nT  
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